FRANK
HOGG
LABORATORY

IlIII“

HE REGENCY TOWER « SUITE215%5 « 770 JAMES ST. * SYRACUSE, NY 13203
PHONE(315)474-7856 « TELEX 848740

-

A "Tour De FORTH"

with

ePORTH

by Charles E. Eaker

copyright 1983 Prank Bogg Laboratory

2 A Tour De FORTH

MANUAL REVISION HISTORY

Revision Date Change

A 250ct83 Original Release, eFORTH 1.0

COPYRIGHT INFORMATION

This entire manual is provided for the personal use and
enjoyment of the purchaser. Its contents are copyrighted by
Charles E. Eaker and Frank Hogg Laboratory, Inc., and
reproduction in whole or in part, by any means, is prohibited.
Use of this program, or any part thereof, for any purpose other
than single use by the purchaser is prohibited.

DISCLAIMER

The supplied software is intended for use only as described
in this manual. Use of undocumented features or parameters may
cause unpredictable results for which neither Charles E. Eaker
nor Frank Hogg Laboratory, Inc. can assume responsibility.
Although every effort has been made to make the supplied software
and its documentation as accurate and as functional as possible,
Charles E. Eaker and Frank Hogg Laboratory, Inc. will not assume
responsibility for any damages incurred or generated by such
material. Charles E. Eaker and Frank Hogg Laboratory, Inc.
reserve the right to make changes in such material at any time
without notice.

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 3

INSTALLING eFORTH

To get eFORTH up and running on your computer, follow the
instructions in the Appendix which applies to your operating
system or computer.

copyright 1983 Frank Hogg Laboratory

4 A Tour De PORTH

TABLE OF CONTENTS

1 WHY FORTH? 8
THE FORTH ENVIRONMENT 8
THE FORTH PHILOSOPHY 8
THE FORTH COMMUNITY 9

2 HOW DO YOU SAY "HELLO"? 10
THE FORTH INTERPRETER _ 10
TYPING MISTARES 11
WORDS 11
STOPPING THE OUTPUT 12
THE DICTIONRY AND ITS VOCABULARIES 12
CONTEXT AND CURRENT 12
MORE WORDS 13
REDEFINING A WORD 14
FORGETTING A WORD 15
EVEN MORE WORDS 15
DEFINE BEFORE USE 15
STARTING FORTH WITH eFORTH 16

3 WHAT DO YOU SAY AFTER YOU'VE SAID "HELLO"? 18
NUMBERS 18
EMPTY STACK 20
CONSTANTS 21
VARIABLES 21
AN AVERAGE EXAMPLE 22
MANIPULATING THE STACK 23
DECIMAL - BASE TEN 24
HEXADECIMAL - BASE SIXTEEN 24
BINARY - BASE TWO 25
CHOOSING NAMES 25

4 WHAT CAN I DO WITH IT? 28
GLOSSARY ENTRIES 29
LOOK, MA! NO VARIABLES 29
THE RETURN STACK 30
FOOD FOR THOUGHT 31
DEFINING A WORD THAT DEFINES OTHER WORDS 32
WHAT DOES does> DO? 32
GETTING FANCIER OUTPUT 33
USING FANCIER INPUT 34
DOUBLE NUMBERS 34
IT'S THE PHONE AGAIN 36

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 5

5 HOW DO I SAVE AND EDIT MY DEFINITIONS? 38
THE FORTH MEETS THE DISK 38
PUTTING TEXT ON A BLOCK 39
THE CURRENT BLOCK 40
THE CURRENT LINE 40
REPLACING AND DELETING LINES 41
THE IMSERT BUFFER 42
STRING EDITING COMMANDS 42
THE FIND BUFFER 42
HOW 7’0 INTERPRET A BLOCK 43
ERRORS WHILE LOADING 44
ANSWERING THE PHONE PROBLEM 44
BACK TO THE RESTAURANT 45
HOwW DID YOU DO? 45
THE ANSWERS, PLEASE 46
ELIMINATING CRAMPS 46
BLOCK EDITING COMMANDS 47
DOCUMENTING YOUR APPLICATION 47

6 DOES FORTH HAVE WHAT COOUNTS? 50
LET ME COUNT THE A's 50
HOW DO LOOPS WORK? 51
DO THE 1I's HAVE IT? 52
CAN I MAKE IT RUN FASTER? 53
DON'T GO OUT OF BOUNDS 53
WHAT'S YOUR SINE? 54
IF...THEN 55
IF...ELSE...THEN 56
WHAT DOES YOUR SINE LOOK LIKE? 56
INDEFINITE LOOPS 57
SOME ODDS AND ENDS 59
IT'S TIME TO leave 59

7 WHAT'S IN A WORD? 62
THE LINK F1ELD 62
THE NAME FIELD 63
THE CODE FIELD 63
THE PARAMETER FIELD 63
VARIABLES 63
CONSTANTS 64
COLON DEFINITIONS : 65
COMPILATION 66
IMMEDIATE WORDS 67
COMPILE TIME AND RUN TIME 68
COMPILE TIME 68
RUN TIME 68
CODE DEFINITIONS 69

copyright 1983 Prank Hogg Laboratory

6 A Tour De FORTH

8 HOW DOES FORTH WORK? 70
THE FORTH MACHINE'S REGISTERS 70
WHO'S NEXT? 71
IMPLEMENTING THE FORTH MACHINE 71
THE eFORTH 6809 FORTH MACHINE 72
THE INTERPRETER 72

9 HOW DOES FORTH COMPILE NUMBERS? 76
NUMERIC LITERALS 76
BRANCHING 77
WHEN if COMPILES 80
HOW compile WORKS 80
STRING LITERALS 82

10 VOCABULARIES 84
CONTEXT AND CURRENT VOCABULARIES 84
CREATING NEW VOCABULARIES 84
VOCABULARY CHAINING 84
DICTIONARY SEARCHING 85
SEALED VOCABULARIES 86

11 HOW CAN I PROTECT MYSELP? 88
COMPILER SECURITY 88
DISK ERRORS 89
EXECUTION VARIABLES 89

12 THE eFORTH 6809 ASSEMBLER VOCABULARY 90
code DEFINITIONS 90
;code DEFINITIONS 92
BRANCH INSTRUCTIONS AND PROGRAM STRUCTURE 93
eFORTH ASSEMBLER SYNTAX 94
IMMEDIATE ADDRESSING 95
EXTENDED ADDRESSING 95
DIRECT ADDRESSING 95
INDEXED ADDRESSING 95
RELATIVE ADDRESSING 97
6889 MNEMONICS 97
MNEMONICS - NO OPERANDS 97
MNEMONICS - IMMEDIATE ADDRESSING ILLEGAL 98
MNEMONICS - IMMEDIATE ADDRESSING PERMITTED 98
MNEMONICS - IMMEDIATE OPERANDS REQUIRED 98
MNEMONICS - INDEXED ADDRESSING REQUIRED 98
MNEMONICS - REGISTER OPERANDS REQUIRED 99
MACROS 99

FPrank Hogg Laboratory copyright 1983

A Tour De FORTH

13 WHERE DOES eFORTH PUT THINGS?

THE
THE
THE
THE
THE
THE

DICTIONARY

PARAMETER STACK
TERMINAL INPUT BUFFER
RETURN STACK

DISK BUFFERS

USER VARIABLE AREA

14 THE END OF THE TOUR
LITERAL STRINGS
SMART WORDS
A CASE STRUCTURE

APPENDICES

A

B

C

D eFORTH
E

THE eFORTH MASTER GLOSSARY
LISTINGS - eFORTH STANDARD EXTENSIONS AND ELECTIVES

INSTALLATION - FLEX

copyright 1983

100
100
101
101
101
101
101

102
102
103
103

HOW DOES eFORTH DIFFER FROM "Starting FORTH"?

eFORTH INSTALLATION - TRS80 COLOR COMPUTER

Frank Hogg Laboratory

8 A Tour De FORTH

CHAPTER 1

WHY FORTH?

Why would anyone choose to use FORTH to write programs
instead of a better-known language such as FORTRAN or Pascal or
even BASIC which probably came free with the computer? FORTH is
more than a programming language. It is a programming
environment, and it is a programming philosophy.

THE FORTH ENVIRONMENT

FORTH is a "modeless” environment. At any given moment, the
FORTH disk operating system and its commands are available to
you. So are the FORTH editing commands, the FORTH compiler, the
FORTH interpreter, and the FORTH assembler. These are not
separate programs that you have to "get out of" in order to use
one of the others. The resources of each are available to the
others at all times.

FORTH is extensible. This means that you can build new
commands, new functions, and new data structures out of existing
ones. The new ones look and behave like the old ones.

FORTH 1is interactive. You can create and immediately test
new commands, functions, and data structures from the keyboard.
In FORTH, your "programs®™ are written in small pieces called
"words" that are combined to make new ones. Any word can be
tested from the keyboard. If what you are testing needs data,
you can supply it from the keyboard. If it returns data, you can
see what comes back at the keyboard.

THE FORTH PHILOSOPHY
The FORTH philosophy is based on this principle:
Only you should protect yourself from your mistakes.
Unlike other languages, FORTH does not stop running your program
and tell you that you tried to do something that is "wrong™ and,

in its infinite wisdom, has prevented a "terrible" thing from
happening. On the contrary, FORTH will let you divide by zero,

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 9

overfiow arithmetic operations all over the place, and all sorts
of other "evil" things.

Neither Pascal nor BASIC, for example, will allow you to
directly get the sum of an integer with a character. That's a
"type" error. Presumably, it's an operation that doesn't make
sense. But both languages give you roundabout ways of doing it
because it is often a valuable thing to do. FORTH doesn't care.
FORTH holds you responsible for the correctness of your
programs. FORTE does not assume that it knows better than you
what a programming error is.

If you are a bad programmer in other languages, you may well
be a terrible FORTH programmer. On the other hand, if you are a
bad programmer in other languages, it may be because those
languages are forever getting in your way, and much of your time
is spent circumventing the language's attempts to "protect" you
from yourself.

FORTH never gets in the way because of something built into
it. If FORTH is a bother at all, it's because things are
missing. Your job is to add them. And while you're at it, you
can add things to protect yourself. You, after all, know what
kinds of mistakes you tend to make, and you should decide whether
to have the computer spend time and effort looking for them.

THE FORTH COMMUNITY

The community of FORTH users is small but intense, talented,
and growing. You can keep up to date with the goings on by
joining the FORTH Interest Group. The main membership benefit is
FORTH Dimensions which is published six times a year. A
membership (which includes a subscription) is currently $15 per
year. There may even be a FIG chapter in your area. Here's the
address.

FORTH Interest Group

P.0O. Box 1105
San Carlos, CA 94070

copyright 1983 Frank Hogg Laboratory

10 A Tour De FORTH

CHAPTER 2

HOW DO YOU SAY “"HELLO"?

One of the first things people often have a computer do is
simply say "hello". You have probably been attacked by this
primordial urge already, but you don't know how to do it in
FORTH. Here's how. Enter

:hi ." Hello, Dummy!" ;

and hit the "return" key or "enter" key or whatever key your
computer has for you to push when you finish typing a 1line of
input. Be sure you include the spaces, and be sure you include
the semicolon at the end. Unlike BASIC, spaces are crucial in
FORTH.

When you hit the return key, FORTH responds by saying "ok".
Now enter hi and FORTH will print "Hello, Dummy!" and that's all
there is to it.

You have just written your first FORTH program. Actually,
FORTH programmers don't "write programs®; they "define words".
So, you have just defined your first word in FORTH, and it's name
is hi .

The definition of a word obviously begins with a colon
followed by the name of the new word. Then we include the names
of the words to be executed when the new word is executed, and
the definition is terminated with a semicolon.

This means that ." (pronounced "dot-quote") is a FORTH word.
It can only be used in a definition. What it does is to arrange
things so that the string which follows it will be printed when
hi is executed. 1In fact, it's the only FORTH word which is used
in the definition of hi .

THE FORTH INTERPRETER

You are communicating with the FORTH interpreter. After you
type a line of FORTH words, the interpreter executes them, one
after the other, from left to right, then says "ok". However,
the interpreter can only execute the words in the input if it can
find them in its "dictionary". If you type in a word it can't

Frank Hogg Laboratory copyright 1983

~

A Tour De FORTH 11

find, it will complain.

TYPING MISTAKES

Did you make a typing mistake and get an error message
insteac of an "ok"? No problem. Just enter the whole line
again, but there may be an easier solution.

First, make sure that your keyboard is generating both lower
and upper case letters. To eFORTH, "hi" and "HI" and "hI" and
"Hi" are all different.

. Did you mis-type just one character in the middle of the
line? Hold down the "control" key, then press the "A" key, then
release the "A" key and the control key. (In the future, we will
simply refer to this sequence as "control-A".) The last line you
entered is printed out again. Use the backspace key to get back
to the character you messed up. Replace it with the correct
character. Now, hit "control-A" again, and you will see the tail
end of the line you backspaced over. Now you can hit the return
key just as if you had re-typed the entire line.

Did you notice a typing error before you hit the return key?
Use the backspace key to move the cursor back to the mistake and
re-type the line from that point.

Is the mistake so bad that you'd just as soon scratch the
whole 1line and start over? Hold down the "control" key, then
press the "X" key, then let up on the "X" key and the "control"
key ("control-X"). The line will disappear. Now try typing it
again.

WORDS

FORTH is just a collection of words, and any word in FORTH
can be executed or it can be used in the definition of a new
word. Do you want to see some of the FORTH words which have been
defined for you? Enter forth words and hit your "return" or
"enter" key.

Look at all those words! What do they all do? You will
find out soon enough, but it may turn out that none of them do
anything you want your computer to do for you. If so, just add
your own words to the list by defining them to do whatever you
want done.

copyright 1983 Frank Hogg Laboratory

12 A Tour De FORTH

Look, there's hi in the list. 1It's the first one. If you
look real hard, you will also find ." somewhere in that mess.

STOPPING THE OUTPUT

Did the list of words fly by too fast for you? You can stop
the output by hitting the "escape” key on most terminals. Use
the "break"” key on the Color Computer. When you are ready for
more output, press the "escape” key again. You can terminate the
output operation all together by hitting the "return" key.

THE DICTIONARY AND ITS VOCABULARIES

The portion of memory where all of the words are stored is
called "the dictionary®™, and each word in the dictionary is
assigned to a "vocabulary". The words we just listed are all in
the forth vocabulary. In eFORTH there are four others:
system editor assembler and disking . You can see the words in
each of those vocabularies by entering the name of the vocabulary
followed by words .

How large is the dictionary? Enter
here origin - u.

and hit return. Don't forget the dot, and don't forget the
spaces. You will see the number of bytes of memory presently
consumed by all the words in the dictionary. Each time we add a
word to the dictionary this number increases.

CONTEXT AND CURRENT

Whenever we enter the name of a vocabulary, that vocabulary
becomes the "context" vocabulary which means that the interpreter
will always search that vocabulary first. If the context
vocabulary is not also the forth vocabulary, then the forth
vocbulary is searched next (and last). 1In other words, the forth
vocabulary is always searched. The details of this are discussed
in a later chapter.

The "current” vocabulary is the vocabulary to which new
words are added. Let's add a word to the system vocabulary.
Enter the following line

system definitions

Frank Hogg Laboratory copyright 1983

A Tour De FORTH ' 13

and hit return. The interpreter first executes system which
makes the system vocabulary the context vocabulary, and then the
interpreter executes definitions which sets the current
vocabulary to be whatever the context vocabulary happens to be at
the time. Now enter

: status? cr ." Buzz off, Turkey!®” ;

and you can amuse yourself by esking a friend to check the status
of your computer by typing in system status? and hitting the
return key. The cr simply starts printing cn a new line.

Before going on, enter forth definitions and hit return.
Now enter status? and note that it's not there. The interpreter
can't find it wunless we first make the system vocabulary the
context vocabulary.

MORE WORDS

Want to print a single character? Enter cr 65 emit and hit
the return key. FORTH will start a new line and print an "A" on
it. A whole pile of "A's" can be printed with a loop. Enter

: chars cr 0 2do 65 emit loop ;

Now enter 10 chars and hit the return key. Let's make chars a
little fancier. But first, let's get rid of the old one. Enter
forget chars and hit the return key. Now enter

variable char 65 char !
and hit the return key, then enter
: chars cr 0 2do char @ emit loop ;

and hit the return key. Once again enter 10 chars and hit the
return key. The result is the same, right? Now enter 45 char !
and hit the return key. Don't forget the exclamation mark. Now
enter 10 chars and see what you get. Change the 10 to some other
number. Change the value of char to some other character.

We have been using decimal numbers for the ASCII characters.
Perhaps you are more accustomed to expressing them with
hexadecimal numbers. Enter hex and hit the return key. Now
enter 40 char ! and hit the return key. 40 1is the ASCII
hexadecimal code for the "at" sign. What do you suppose entering
10 chars and hitting enter will print out? Sixteen of them
because the hexadecimal number 10 equals sixteen. Would you
rather have the numbers you enter be interpreted as decimal

copyright 1983 Frank Hogg Laboratory

14 A Tour De FORTH

numbers again? Enter decimal and hit the return key.

Would you like to set the value of char with hexadecimal
numbers and call chars with decimal numbers? Ok, the ASCII hex
code for an up arrow is 5E, right? And you want to print out 20
(decimal) of them? Enter

hex 5E char | decimal 20 chars
and hit the return key.

Have you ever worked with a language as congenial as FORTH;
one that does what you tell it to do and says "ok" every time?
It's interactive just like BASIC, and it lets you use names that
are far more descriptive than "F2" or "A$". 1In fact, if you
don't like the name of a word in FORTH, change it. You can
rename chars to be something like characters or whatever name you
prefer, very easily by entering

: characters chars ;
and hitting the return key. Now whenever you enter characters it
does the same thing as chars . Prefer a shorter name to save
your fingers? enter

s ¢ chars ;

hit the return key, and entering 10 c will do the same thing as
10 chars

You don't even have to restrict your names to numbers and
letters. Enter

: $ chars ;
and it will be "ok"™ with FORTH. Now 10 $ will do the same thing

as 10 chars . The names of your words can be any combination of
characters in any order you like.

REDEFINING A WORD

You can define another word named chars if you wish. Enter
s chars cr cr chars cr cr ;

Then enter chars and see what it does.

Frank Hogg Laboratory copyright 1983

.

A Tour De FORTH 15

The new chars skips two lines, then executes the o0ld chars ,
then skips two more lines. Enter words again, and you will see
that chars appears in the list twice. However, only the 1last
one you defined can now be executed or used in a definition.

FORGETTING A WORD

If you enter forget chars , the last one you defined will be
removed from the dictionary. Try it. Then enter words to verify
that it is gone. 1If you enter forget chars again, the first one
you defined will be removed. However, forget will also remove
every word you have defined since you defined chars . You caimnot

selectively remove wcrds from the dictionary; only a word and all
words defined since it was defined.

EVEN MORE WORDS
Want to crash once in a while? Define a word to do it.
: crash begin again ;
Now, whenever you enter crash the only escape is to hit the reset
button. A bit drastic, perhaps, but it makes the point that
everything is easy in FORTH.

A less dramatic capability is ordering your computer to
sleep. Enter

: sleep begin snore key? until ;

and you will get an error message because snore has not been
defined.

DEFINE BEFORE USE
FORTH obeys the rule "Define Before Use" without exception.
You cannot execute a word which is not in the dictionary (has not
been defined), and you cannot use a word in a definition which is
not in the dictionary.
So, let's define snore
: snorecr ." 2222 2z" ;

Now, enter the definition of sleep again, and when your machine

copyright 1983 FPrank Hogg Laboratory

16 A Tour De FORTH

is getting on your nerves just tell it to sleep . You can wake
it up again by gently nudging one of its keys.

Enough of this foolishness. All of the foregoing nonsense
has given you a quick taste of FORTH, but it has not given you
much that's useful in learning how to use FORTH to express the
demonic schemes lurking in the recesses of your own mind. You
will have to learn the "ok" way to use words, numbers, and lots
of other things in FORTH. This manual will take you on a quick
tour of FORTH.

A more comprehensive introduction to FORTH is Starting FORTH
by Leo Brodie and published by Prentice-Hall. It can be ordered
from Frank Bogg Laboratory. Starting FORTH will also show you
some interesting things about the internal workings of
computers. It is an excellent introduction to both FORTH and
computers.

STARTIRG FORTH WITH eFORTH

If you decide to use Starting FORTH with eFORTH, there are a
few differences between eFORTH and the FORTH which Brodie uses
which you should be aware of. Most of them involve subtle and
advanced features of FORTH which you don't have to worry about
right now. Every word which Brodie uses in his examples and
exercises has been defined for you in eFORTH. A complete list of
differences is given in an appendix.

Frank Hogg Laboratory copyright 1983

A Tour De FORTH

copyright 1983

17

Frank BHogg Laboratory

18 A Tour De FORTH

CHAPTER 3

WHAT DO YOU SAY AFTER YOU'VE SAID "HELLO"?

FORTH uses a stack for all calculations, holding
intermediate results, and passing parameters from one word to
another. The stack is a last-in, first-out stack which means
that you only have access to the last item which was pushed onto
the stack. The phrase "top of the stack" is used to refer to the
last item pushed to the stack. Putting things on the FORTH stack
is like parking cars in a skinny driveway; you can't get the car
in the garage out until all the others have been moved.

Efficient use of the stack requires the use of Reverse
Polish Notation (RPN) which takes some getting used to. So,
let's start.

Enter 1 29 and hit the return key. FORTH will respond with
an "ok" and wait on the next line for more input. "0k, what?"
you may be saying. "What did it do?"

Your keystrokes are read and saved until you hit the return
key. After you hit the return key, FORTH attempts to interpret
your input, one word at a time. A word in FORTH is any sequence
of characters separated by spaces. So, FORTH first finds the
word 1 in your input. Now, FORTH searches for it in the
dictionary. You may have noticed that 1 is in the dictionary.
When 1 is found in the dictionary, the interpreter executes it,
and 1 does whatever it was defined to do.

NUMBERS

1l is defined to push the binary representation of the
integer one to the stack. FORTH stores integers in the computer
as 16-bit, binary numbers. If that 16-bit binary number is
interpreted as a signed number, it can represent integers in the
range from =32,768 to +32,767. If the 16-bit binary number is
interpreted as an unsigned number, it can represent non-negative
integers in the range from 0 to 65,525.

Prank Hogg Laboratory copyright 1983

~

A Tour De FORTH 21

CONSTANTS

FORTH allows the declaration of constants. For example,
enter the following lines

50 constant fifty
40 constant forty
forty fifty + .

and figure out what action is taken by a word which has been
defined as a constant. Right. It pushes to the stack the number
which that constant has been defined to be. Here 1is a stack
diagram.

WORD STACK —==>
(The stack is empty.)
forty 40
fifty 40 50
+ 90
. (The stack is empty.)

VARIABLES

FORTH also allows the declaration of variables. For
example, enter these two lines

variable age
age .

and ponder what a variable does. The first line created a
variable named age , and words will now list it as being in the
dictionary. The second line caused age to be executed. It put a
number on the stack which the dot printed out. What is that
number? It is the memory address where the value of the variable
named age is stored. That's all well and good, but how does one
get the value stored at the address of the variable onto the
stack? Enter

age @ .
You will see the value that age was initialized to when it was
defined. So, @ (pronounced "fetch") is a word defined to remove

an address from the stack, then push the 16-bit contents of that
address to the top of the stack.

copyright 1983 Frank Hogg Laboratory

22 A Tour De FORTH

As we all know, age is a variable whose value is updated
(with emphasis on the "up"”) on a periodic basis. How does one
assign a new value to age ? Enter 34 age ! and hit the return
key. Now enter age ? and hit the return key. "34" will be
printed because ? is in the dictionary and has been defined as

s ? e .

which means that instead of typing @ . you may simply type ?
and the result is the same.

Notice that when ! (pronounced "store") is used, the data
to be stored is on the stack under the address at which it is to
be stored. Here is a stack diagram of an example.

WORD STACK >
(The stack is empty.)
forty 40
age 40 address-of-AGE
| (The stack is empty.)

Furthermore, @ and ! need not be used with the names of
variables. If you enter 40 100 ! then 40 will be stored in the
two bytes (there are 8 bits in a byte) at addresses 100 and 101.
The words @ and ! always fetch and store 16-bit numbers. If you
wish to manipulate single bytes in memory, the 8-bit memory
operations are c@ and c! .

A fancier memory manipulation word is +! which is
pronounced "plus-store.” If you enter 2 age +! and hit the
return key, 2 will be added to the current contents of age .
Thus, if age equals 34 before this operation, it will equal 36
when it is completed. Similarly, -2 age +! will subtract 2
from the contents of age .

AN AVERAGE EXAMPLE
Suppose you want the sum and average of several numbers.
Suppose the numbers are 280 319 647 12 219 and 572. You can have
your results by entering
280 319 + 647 + 12 + 219 + 572 + dup . 6 / .
and hitting the return key. Actually, you can hit the return key

any time you like and as often as you like. If you entered the
following four lines,

Prank Hogg Laboratory copyright 1983

—

A Tour De FORTH 19

Back to our line of input. 29 , unlike 1 , is not in the
dictionary. Obviously, the interpreter won't £find it when it
looks for it there. What happens then? The interpreter attempts
to interpret the word as a number. 29 can certainly be
interpreted as a number. The interpreter then converts it to its
internal, binary representation and pushes it to the stack. So,
1l and 29 have both been pushed to the stack.

Let's check it. There is a special word in eFORTH which

will print out all of the numbers which are presently on the
stack. Enter .s and hit return. It should print out

0 1 29
followed by the usual "ok".

Now enter + and hit return. Again, the interpreter 1looks
for + in the dictionary, finds it, and executes it. + is defined
to remove the top two 16-bit numbers from the stack, acdd them
together (ignoring any overflow), and push their sum to the
stack. So, + removes 29 from the stack, removes the 1 from the
stack, adds them together, and places the result, 30 , on the top
of the stack. Use .8 to verify this.

The interpreter gets the next word, which is the carriage
return, and executes it. This results in the printing of "ok,"
and waiting for a new 1line of input (which it has been doing
while you were reading this).

Now enter a period and hit the return key. The "dot" is a
FORTH word which is defined to print the signed, 16-bit number on
top of the stack followed by a space. The number is removed from
the stack. Ah-ha! FORTH can be used interactively as an RPN
calculator. Try some more lines of input.

=346 -247 + .

3 2 *
8 5 s °
10 3 /7 .

10 3 mod .
Next, decide what the result will be if you enter
4 3 2 + *

then ¢try it. Were you right? If not, do you see why? Pretend
that you are the FORTH interpreter. The first word in the input
stream 1is 4, so you push 4 to the stack, then 3, then 2. The
next word is + so you remove the top two numbers (3 and 2), add
them up, and put 5 on top of the stack. The next word is * so
you find it in the dictionary and execute it. * is defined to

copyright 1983 Frank Hogg Laboratory

20 A Tour De FORTH

remove the two top 16-bit numbers from the stack (4 and 5),
multiply them, and put the result, 20, on the stack. Finally,
the dot is interpreted which prints "20" on the terminal (instead
of "14"7).

Here is a "picture" of what happens when each word is
interpreted.

WORD STACK ——>
(The stack is empty.)
4 4
2 4 2
3 4 2 3
+ 4 5
* 20
. (The stack is empty.)

If you have never seen Reverse Polish Notation before, you
may find it somewhat odd to express 4 * (3 + 2) as 4 3 2 + * and
you may think that the equivalent 3 2 + 4 * is only slightly more
"natural”. Be assured that if you hang around something 1long
enough, it will soon seem quite "natural®". The advantages of RPN
are two. First, no parentheses in an expression are necessary,
so you can console yourself with the prospect of fewer
key-strokes. Secondly, by using a notation which is "natural”
for a first-in, last-out stack, we achieve extremely efficient
parameter passing from word to word. Stick with it.

EMPTY STACK

If you lose track of what is on the stack (and you will from
time to time) and you try to print a number from the stack (or
remove it in some other way) when the stack is empty, you will
get an error message. FORTH is not harmed or bashed by this.
Try it. Keep entering dots until you get the "Empty stack."
message.

Frank Hogg Laboratory copyright 1983

A Tour De PORTH 23

280 319 +

647 + 12 + 219
+ 572 + DUP

[] 6 / o

you would get the same results.

MANIPULATING THE STACK

This 1line of input contains a new word. dup is defined to
push to the stack a copy of the word which is on top of the
stack. If you enter 10 dup there will then be two tens on top of
the stack. When dup is executed in the above line, the sum we’
are after 1is on top of the stack. But we want to print it out,
and we also want to use it to calculate the average. So, we
copy it, print out the copy, and use the original which is still
on the stack to calculate the average. The average is then
printed (ignoring the remainder).

Other words that perform operations on the stack are over ,
drop and rot . Suppose you have

10 12
on the stack. (We henceforth use the convention of listing the
top item on the stack on the right.) If you enter over you will
have

10 12 10
on the stack. And if you enter over again, you will have

10 12 10 12
on the stack. If you have

1 2 3
on the stack, rot will give you

2 31
on the stack.

To summarize, the interpreter fetches words from the input

stream one at a time, 1looks them up in the dictionary, and
executes them. If the word is not found in the dictionary,

FORTH will attempt to interpret the word as a number, convert it
to its binary form, and push it to the stack. What if the word

copyright 1983 Frank Hogg Laboratory

24 A Tour De FORTH

can't be interpreted as a number? Then FORTH prints the word
followed by a question mark and waits for another input line.
The rest of the input text is ignored. As it turns out, it is
quite possible that FORTH will not be able to convert 2 into a
number. Read on.

DECIMAL ~ BASE TEN

One of the words in FORTH is base . It is a variable which
contains the number base which will be used for input-output
conversion of numbers. decimal is also a word. Here 1is its
definition:

: decimal 10 base ! ;
Whenever the interpreter finds decimal in the input and executes
it, 10 (decimal) is pushed to the stack followed by the address
of the variable base then 10 is stored at the address which base

put on the stack. In other words, when decimal is executed, it
sets the number base used by the interpreter to ten.

HEXADECIMAL - BASE SIXTEEN
hex is also in the dictionary. It has been defined as
s hex 16 base !
When hex is executed it sets the number base to sixteen.

Now a mild mind-bender. The definitions of decimal and hex
listed above assume that at the time they were put in the
dictionary the base was ten. If the base at the time they were
defined was sixteen, then their definitions would have to be

decimal O0A base !
hex 10 base 1!

Changing the value of the base changes how strings of digits are
interpreted in the input stream, and how bit patterns will be
translated on output.

Enter decimal 14 15 16 hex . . . and hit the return key.
You have an interactive base conversion calculator. Enter some
more numbers, change the base (to something as weird as 27, if
you wish), then print out the numbers. Try any base you like.
When you have had enough of this foolishness, enter decimal and
hit the return key. You will be on familiar turf again.

Frank Hogg Laboratory copyright 1983

('s

A Tour De FORTH 25

hit the return key. You will be on familiar turf again.

BINARY - BASE TWO

Conversion from decimal to binary is certainly a tiresome
activity. Obviously FORTH can do it for you. Enter

decimal 89 2 base ! .

and hit the return key. FORTH will print out "1011001". If you
do a 1lot of decimal to binary or binary to decimal conversions,
you may grow weary of entering 2 base ! all the time, so let's
define a word which will set the number base to two.

As mentioned earlier, a definition of a new word to be added
to the dictionary begins with a colon and ends with a semicolon.
In addition, we must provide a name for the new word.
Remember that a name may be any sequence of characters ycu like.
All our word has to do is store a 2 into the variable base .

CHOOSING NAMES

One of the most important aspects of FORTH programming is
choosing good names for new words. One good rule is to focus on
what a word does rather than how it does it. We could define our
new word as

: 2base! 2 base ! ;
and it will certainly do what we want. But its name focuses on
how the word works rather than what it does. What's a bLetter
name? How about the one in this definition?

: binary 2 base !
Did you enter this definition and get an error? We set the base
to two, remember? And 2 is not a valid number in base two. So,
enter decimal and try again.

You may put as many spaces as you like between the words you
enter. But you must enter at least one space between each FORTH
word. For example,

decimal:binary2base!;
will not do at all even though it is relatively readable. Spaces

are the traffic cops in FORTH; they are the only way the

copyright 1983 Frank Hogg Laboratory

26 A Tour De FORTH

interpreter can tell where one word ends and the next word
begins. You will have to rid yourself of that horrible BASIC
habit of eliminating spaces to save space.

If everything went all right, FORTH should have said "ok".
Now enter words and you will discover that bimary is in the
dictionary all ready to be used. So, enter something like

decimal 512 binary .
and hit the return key.

The freedom you have in FORTH of specifying the base which
will control numeric output and input conversion carries with it
a responsibility to make absolutely sure that you always know
what the current base is; otherwise you will be in for some
surprises. Some will be amusing; others will be very painful. If
you don't know what the value of base is, set itl

Frank Hogg Laboratory copyright 1983

A Tour De PORTRH

copyright 1983

27

Prank Hogg Laboratory

28 A Tour De FORTH

CHAPTER 4

WHAT CAN I DO WITH IT?

Suppose you want to charge the long distance telephone calls
on an obscene phone bill to the people who made the calls. The
people, let us suppose, are Adam, Betsy, Carl, and Denise. To
charge a 37 cent call to Carl we would like to be able to enter

37 CcCarl

and hit enter. The new total owed by Carl should be calculated,
saved, and displayed. We will need to define variables to hold
the totals being accumulated for each person.

variable Adam's
variable Betsy's
variable Carl's
variable Denise's

Now we define the entry commands:

Adam Adam's €@ + dup . Adam's
Betsy Betsy's €@ + dup . Betsy's
Carl Carl's @ + dup . Carl's
Denise Denise's @ + dup . Denise's !

but they are rather repetitious. It would be better if we could
"factor out" all the common operations and put them into a word
such as NewTotal and define the commands as

Adam Adam's NewTotal
Betsy Betsy's NewTotal
Carl Carl's NewTotal
Denise Denise's NewTotal

Let's see what's involved in defining NewTotal .

Frank Hogg Laboratory copyright 1983

fq.

A Tour De FORTH 29

GLOSSARY ENTRIES

But first, let's really do this right. Before we write the
defirition for NewTotal , let's write a description of what it
does. This description is called a "glcssary entry". Tt is a
good idea to write a glossary entry for each word you defire. -
Six months from now you may look at NewTotal and not bhave the
slightest idea of what it does or how to use it. FHRere is what
the glossary entry for NewTotal should look like.

WORD VOCABULARY BLOCK STACK EFFECT

NewTotal forth 1} (amt adr --)
Adds "amt" to the value stored at "adr", then prints
ovt the new value stored at "adr".

This entry tells us that NewTotal is in the forth vocabulary.
The "0" in the "BLOCK" column means that we are g¢oing to enter
this definition from the keyboard which means that we won't be
able to make changes to it or even look at it again. The next
chapter presents a better way to enter defiritions. The stuff in
parentheses tells us what the "stack effect" of the word is.

In the entry in the "STACK EFFECT" column, the two dashes
indicate the point at which the word executes. Anything on the
left of the dashes indicates what values the word expects on the
stack, and anything on the right of the dashes indicates what
values the word leaves on the stack. In this case, NewTotal
expects two values to be placed on the stack for it to use. When
it finishes executing, it will have removed those two values from
the stack. It does not put any new values on the stack. Eaving
specified what NewTotal should do, we can turn to writing its
Ggefinition.

LOOK, MA! NO VARIABLES!

Obviously, NewTotal will need to use the address it
receives on the stack twice. So we will have to copy it and save
the copy somewhere. We could create a variable for this purpose,
but that's considered inelegant in FORTH circles. Storing and
fetching costs time as well as memory for the variable (including
its name). We might try leaving it on the stack, but then the
address and its copy are on top of the number to be added to the
variable. We <can shuffle things around on the stack with swap
and other stack manipulation words.

¢ NewTotal swap over @ + dup . swap ! ;

copyright 1983 FPrank Hogg Laboratory

30 A Tour De FORTH

Here is a stack diagram of what happens when this version of
NewTotal executes. Notice that amt and adr are already on the
stack when it executes.

WORD STACK ——>
: NewTotal amt adr
swap adr amt
over adr amt adr
e adr amt 0l1ldSum
+ adr NewSum
dup adr NewSum NewSum
- adr NewSum
swap NewSum adr

The problem here is that unless you have had lots of experience
with FORTH, this definition of NewTotal is virtually unreadable
without the aid of a stack diagram. There is another way to get
stack values temporarily out of the way that may help things a
little bit. It is time to introduce you to the Return Stack.

THE RETURN STACK

FORTH uses two stacks. They are called "the stack"
(technically, the "parameter stack") and the "return stack". The
primary function of the return stack is to hold FORTH return
addresses and loop parameters, neither of which we have discussed
yet. For now, we will look at another use of the return stack: a
place to temporarily put numbers that are in the way.

Suppose that you have a value on top of the stack that you
wish to use, but there are values below it that you want to do
something to first. The value on top can be moved to the return
stack with the word >r (pronounced "to R") and retrieved with the
word r> (pronounced "from R"). If you wish to leave this value
on the return stack, but have a copy of it put on the parameter
stack, use r@ (pronounced "R fetch"). Obviously, these words
must be used with care, else your temporary value on the return
stack might be used as a return address and FORTH will probably
crash. Every >r in a colon definition should be paired with a
subsequent r> in the same colon definition.

Back to our problem of defining NewTotal . We can move the
address to the return stack with >r , get back a copy of it with
r@ , then use that copy of the address to fetch the value at that
address, take the sum, copy it, print out the copy, get the
address back from the return stack with r> , and finally store

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 31

the new sum.

t NewTotal >r r@ €@ + dup . > !

e

Here is a stack diagram.

WORD STACK ====>
5 NewTotal amt adr
or amt
re@ amt adr
e amt 01dSum
+ NewSum
dup NewSum NewSum
5 NewSum
r> NewSum adr

!

°
’

Remember, the definition of NewTotal must be entered before you
enter the definitions of the commands which use it.

FOOD FOR THOUGHT

Here's another problem. A friend comes to you with this
one. She bought a computer out of curiosity, then realized if she
took it down to her restaurant, she could write off what she paid
for it as a tax deduction. What she wants to do is set it by the
cash register and use it to add up her customer's checks. She
tried to write a program to do it (in BASIC, of course) without
any success. Can you help?

The restaurant is busy and has 1lots of employees. The
program should be simple enough to use so that any of them can
operate it. You suggest using Eglain, ordinary English. How
about if they step up to the computer and enter

Total for blt fries and shake is

and hit return? That's great, she says, but can you do it?
Sure. Won't it take a long time? 1Is three minutes a 1long time?
You're kidding! Not with FORTH.

The basic trick is to have Total push a zero to the stack,
have the names of food items add their price to the total c¢cn the
stack, and have is print out whatever is on the stack. Words
like for and and shouldn't do anything. So, we start with the
following definitions.

copyright 1983 Frank Hogg Laboratory

32 A Tour De FORTH

¢ Total 0 ;
s is e 3
¢ for 7
¢ and H

Not bad so far. What about the names of food items? We could
define them this way.

s blt 195 +
e fries 75 +
¢ shake 125 +

and define other items the same way. And, except for defiring
everything on the menu, we're all done. Not bad, huh?

DEFINING A WORD THAT DEFINES OTHER WORDS

Actually there's a better way to define menu items. Each
item on the menu is a name associated with a price and an action
to be performed on that price. It would be much more convenient
if we could define menu items this way:

195 price b1t
125 price shake

and so on. For this to work, we must define price in such a way
that when it executes it defines a new word. And when price
defines another word, it should also specify what happens when
that word executes. Here's how.

: price create , does> €@ + ;

Enter the definitions of Total and is given above then enter the
definition of price then enter

195 price blt
125 price shake
Total blt shake is

and, Good Grief!, it works. How does price do it?

WHAT DOES does> DO

When the interpreter looks at 195 price blt it first pushed
195 to the stack, then price was executed. When price executes,
it first executes create which gets the next word in the input,
blt , and adds it to the dictionary. Next, the comma executes

Frank Hogg Laboratory copyright 1983

[y

A Tour De FORTH 33

which removes 1¢%5 from the stack and places it in the dictionary
as part of the definition of blt , then does> executes.

does> waves its magic wand over blt so that when blt
executes, it will first push, to the stack, the address where the
195 was stored, then it will execute the words which follow does>
in the definition of price .

So, when blt executes, it fetches the 195 to the stack then
adds it to whatever is already on the stack. That's just what we
want blt to do. NMow other menu items can be added to the
"program"” with very little effort and in a much more obvious way.

GETTING FANCIER OUTPUT

One thing about these two samples that is not very nice 1is
that we must work with numbers that are whole nurbers of pennies.
It would be better if these applications printed out things 1like
"$3.57" instead of simply "357". Can we do it? Sure.. All we
have to do is define a word to be used in place of the dot. Here
it is:

: S$. 0<K$# # % ascii . hold #s ascii $ hold #> type ;

How does it work? First, it pushes a zero to the stack. This
word will print a 16-bit number which is on the stack. However,
the words in this definition which do output formatting cf =a
number on the stack assume that it is a 32-bit number. So, the
additional 2zero simply converts the 16-bit number to a 32-bit
number. (This only works if the number is positive.)

The word <# sets things up to begin creating the printable
"picture” of the 32-bit number on the stack. Then, # converts
the right-most digit (the pennies digit). The next # converts
the dimes digit, and the phrase ascii . hold inserts a period
into the output string we are building. Next, #s converts all of
the remnaining digits in the number giving at least one zero, then
ascii $ hold inserts a dollar sign onto the output string. #>
cleans up by dropping the 32-bit number remaining on the stack
(it is now a zero), and pushes the address of the first character
in the output string and the number of characters in the output
string to the stack. type uses these values to print out the
string. type does not print any leading or trailing spaces.

Now you can enter the definition of $. then re-enter the
definitions of is and NewTotal replacing the dot with §. and
that's it. "What?" you may be asking. "I have to re-enter the
whoie definition of NewTotal again? Can't I just edit it?" No,
bhecause you entered it from the keyboard. There is another, far

copyright 1983 Frank Hogg Laboratory

34 A Tour De FORTH

more convenient way to do all of this which we will get to in the
next chapter.

USING FANCIER INPUT

Our output is more "professional" looking, but the input is
not. Can't we enter things like 3.95 or 400. and have them
interpreted as $3.95 and $400.00, respectively? Partly. Go
ahead and enter them, it's "ok" with FORTH. Now enter a dot. A
zero? Enter another dot. There's the number you entered.
What's that extra zero doing on top of it?

Any number you enter with a decimal point in it is
interpreted by FORTH as a "double" number; as a 32-bit number
which the interpreter simply pushes to the stack. The zero is
just the "high-order" 16 bits of the 32-bit number. Fnter
4000000. then enter two dots. Weird. Enter 4000000. again then
enter d. and things will look better. d. does the same thing
the dot does except that it interprets the top two 16-bit numbers
on the stack as being a single 32-bit number which it 1removes,
" converts to a string, and prints it out.

DOUBLE NUMBERS
The interpreter will interpret a number in the input as

being a 16-bit (i.e., "single") number if it is not "punctuated"
and as a 32-bit (i.e., "double") number if it is "punctuated".
The following are interpreted as single precision numbers:

0 -13000 13000
The following are interpreted as double precision numbers:

0.0 0. «0 -3556.22 -4999

There may be more than one punctuation character in the number
and other punctuation characters besides the period are

[’} / =] H
but the dash may not precede the first digit. A leading dash
specifies a negative number. Consequently, the following are
interpreted as double numbers.

12:29:15 7/16/83 343-34-3434 555-1212 -23.56

The last one is interpreted as a negative double number.

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 35

Notice, however, that the interpreter converts all of the
following to the same internal 32-bit, binary representation.

100.4 10.04 -1004 1004.

The only difference is that the variable dpl is set to equal the
location of the rightmost punctuation character. After "1004."
is interpreted, dpl equals zero, after "10.04" is interpreted,
dpl equals two and so on. If dpl is negative, then no
punctuation character was encountered and the number was
interpreted as a 16-bit number.

If you enter 123.45 the interpreter will push a 32-bit
number to the stack. Now enter d. and see what is printed.
Enter 1234.5 d. and see what is printed. They are the same.
And there is no decimal point. What's the difference? The value
left in dpl after each one was interpreted. This opens the
possibility of writing a word which will scale a double number
according to the value of dpl . Here it is.

: scale dpl @ 0 3 within not
abort®” Entry is out of range.”
drop 2 dpl @ 2do base @ * loop ;

(Don't bother to enter this. There are too many possibilities
for mistakes and we are almost to the previously mentioned next
chapter.) The first line fetches the value in dpl and checks to
see if it is equal to or greater than zero and less than three.
within removes dpl and the zero and the three from the stack
and leaves a "flag". If the flag is zero (false), then dpl is
not within the specified range; if the flag is -1 (true), then it
is. not inverts the flag so that it is now true if dpl is not
within the specified range.

abort" removes the flag, and if it is true, it prints out
the string which follows it and executes quit which terminates
execution of scale and returns control back to the keyboard. If
the flag is false, execution continues by dropping the high-order
part of the 32-bit number leaving a single number. A loop then
multiplies the number by the current base the proper number of
times. (You may want to enter prices in base two.)

Once again, we can modify the definition of NewTotal so that
we can make phone call entries with 1.16 Carl and 4. Denise .

¢ NewTotal >r scale r@ @ + dup $. > ! ;
We can use scale in our definition of price as follows:

: price create scale , does> @ + ;

copyright 1983 Frank Hogg Laboratory

36 A Tour De FORTH

and enter menu items with 1.95 price blt .

IT'S THE PHORE AGAIN

We can use the magic of does> to make our phone bill
application even better. In this case, we want to be able to
defire a number of people and associate with each one a nhame, a
running total, and an action. Here's how.

¢ caller create 0 , does> NewTotal ;
caller Adam

caller Betsy

caller Carl

caller Denise

When caller executes, it adds a word to the dictionary, stores a
zero with it, then does> waves its magic wand so that when the
new word executes, Adam , for example, the address where the zero
was initially stored is pushed to the stack and NewTotal is
called. This way we don't have to define both Adam and his
variable.

But what if we enter a bunch of phone charges, decide we are
using the wrong bill and want to start over? With the first way
of doing it we can simply reset all the variables to zero with a
sequence like 0 Adam's ! and start over. How do we do that with
this new way? Wow, look at the time. We'd better be getting on
to the next chapter.

Frank Hogg Laboratory copyright 1983

A Tour De FORTH

copyright 1983

37

Frank Hoggqg Laboratory

38 A Tour De FORTH

CHAPTER 5

HOW DO I SAVE AND EDIT MY DEFINITIONS?

The point has been made that entering definitions from the
keyboard has serious limitations. We cannot 1look at the
definitions we have entered when we have forgotten how the
entered words were defined. Even worse, we can't modify those
definitions. There should be a better way, and there is. Like
most other languages, we can save our definitions on disk which
gives a pernznent record of what we have done and aliows us to
change things if the need arises. FORTH, however, views the disk
a bit differently than other languages. There are no files.
("What do you mean, there are no files! You've got to be
kidding!") Since files are the backbone of every other disk
operating system, we will probably hear a lot of muttering in the
background throughout this chapter. Actually, a good way to tell
when you have finally become a good FORTH programmer is
discovering that you no longer wish you had files.

THE FORTH MEETS THE DISK

To FORTH, "the disk" 1is simply a sequence of "blocks" of
data. A block consists of 1024 bytes of data. Each block has a
number and the blocks are mapped onto "the disk" in an obvious
way .

Block 0 refers to the first 1024 bytes of data on the first
track of the disk in the first disk drive. Block 1 refers to the
second 1024 bytes of data on the first track of the disk in the
first disk drive. Block 152 (or 493 or 615 or whatever,
depending on the capacity of the disk) refers to the last 1024
bytes of data on the last track of the disk in the first drive.
Block 153 refers to the first 1024 bytes of data on the first
track of the disk in the second disk drive. And on it goes.

In order for a program to work on a block of data, that
block must first be read into memory. FORTH maintains buffers to
hold blocks which have been read in from the disk. 1In addition
to 1024 bytes of data, a buffer has two additional bytes to hold
the number of the block which is currently in the buffer, and two
null bytes following the data bytes to mark the end of the
buffer. As supplied, eFORTH maintains four buffers, and this
number can be adjusted, but there must be at least two buffers.

Frank Hogg Laboratory copyright 1983

A Tour De FORTH _ 39

A block of data is accessed with the word block which
expects the number of the requested block to be on the top of the
stack. block searches through the buffers to see if the
requested block is already in memory. If it is, block returns
the address of the first data byte in the buffer where it found
the block (by replacing the block number with the address). If
the block is not in a buffer, a buffer is selected, and the block
is read from the disk into the buffer, then, as before, the
address of the first data byte is returned on the stack.

If you read a block into a buffer and make changes to the
data in the block (with editing commands, for example), the
buffer is marked as "updated" (the word "dirty" is used in some
circles). If that buffer is later required for a requested block
which is not in memory, the updated block in that buffer is
written out to the disk, then the requested block is read into
the buffer.

You can force the writing of all updated buffers to the disk
by executing flush . You can prevent the writing of all updated
buffers by executing empty-buffers but all changes made to every
block currently in the buffers will be lost.

This scheme 1is quite simple and powerful, and it is the
foundation of most disk operating systems. If you absolutely
must have a file system FORTH gives you the basic tools you need
to write one.)

PUTTING TEXT ON A BLOCK

We can interpret the contents of a block as being any type
of data we like having any kind of structure we like. An obvious
possibility is to view the 1024 bytes on a block as being 1024
characters of text. Text is typically organized into lines with
some number of characters on each line. A simple scheme is to
suppose that each line has some exact number of characters on it,
say 64. 64 goes into 1024 exactly 16 times, so we can view a
block which has text on it as containing 16 lines of text with 64
characters on each line.

Most FORTH editors make these assumptions, and the eFORTH
editor is no exception. Let's use the editor to save the
applications we developed in the last chapter starting with the
phone bill application.

copyright 1983 Prank Hogg Laboratory

40 A Tour De FORTH

THE CURRENT BLOCK

We first need to find a block that isn't being used for
anything. Enter 10 list and hit return. list specifies the
current block by setting the variable scr equal to the block
number .

No, that block has stuff on it. Gee, whiz! There's the
definition of 1list and it's only three lines long! Sure enough,
it stores the block number into scr . Notice that line 0
contains a "comment" which briefly describes what is on the block
and has a date on it. (The date is automatically put there by
the eFORTH editor every time a change is made to the block.) It
also has the initials of the person who made the 1last
modification to the block. If you want to see your initials up
there in the bright lights of line 0 enter

I'm cee
except replace my initials with yours.

Putting a comment on line 0 is a common convention (not a
requirement) which helps to document what is on a disk. The word
index , which is defined on this block, takes advantage of this
convention. For example, enter 48 60 index and hit return. (If
you are using eFORTH and followed the directions for setting it
up on your computer, you should have at 1least 85 blocks
available.) index will print out line 0 on blocks 48 through 59.
Block 54 appears to be empty. Let's list it just to be sure.
All 16 lines appear to be blank so let's use it. However, there
may be Jjunk on this block which list doesn't show us. To be
absolutely sure that the block is clean for editing, enter wipe
and hit return.

Oh dear. Where's wipe ? It's in the editor vocabulary, so
enter editor wipe and it should be "ok".

THE CURRENT LINE

All editing commands operate on the "current" line. We
specify that line 0 is the current line by entering 0 t . Try
it. This command also prints the current line. Notice the caret
at the beginning of the 1line. This is the "cursor"™ and it
indicates the current cursor position. More on this later.

Let's put a comment on this line which indicates what's on
the block.

p (NewTotal caller NamesOfCallers

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 41

A comment begins with a left parenthesis, which must be followed
immediately by a space, and ends with a right parenthesis. We do
not include the right parenthesis because the editor will
automatically put it on the line for us. (Later, when we give
this block to the FORTH interpreter, everything inside the
parentheses will be ignored.)

Enter 1 (lower case "L") and hit return. This command
always lists the current block. Now enter the following lines:

0<% # #%# ascii . hold #s ascii $ hold # type ;:
: scale (d --n)

dpl e 0 3 within not

abort® Entry is out of range."

drop 2 dpl @ ?2do base @ * loop ;
NewTotal (amt adr —)

>r scale r@ @ + dup $. > ! ;
: caller (-——) create 0 , does> NewTotal ;
caller Adam (amt —)
caller Betsy (amt —)
caller Carl (amt —-)
caller Denise (amt —)

EEEEECEEEEECREEER
[1]

then use the 1 command to look at the block.

The u command first moves all the lines below the current
line down one line. Line 15 is rolled off the bottom and 1lost.
The 1line "under" the current line is cleared then it becomes the
current line. Then the command puts the text which follows it
onto the current line.

This block is a little crowded, but we'll take care of that
later.

REPLACING AND DELETING LINES

Did you make a mistake that needs to be corrected? Make the
line with the mistake on it the current 1line. Now use the p
command to replace it. Is there an extra line you just want to
get rid of? Or did Denise move away? Make that line the current
line then enter p followed by two spaces and hit return. The
line will be blanked. Or make the 1line to be eliminated the
current line, then enter x and hit return. The current line will
be deleted and all lines below it will be moved up. Line 15 is
filled with blanks.

copyright 1983 Frank Hogg Laboratory

42 A Tour De FORTH

Do you need to shuffle some lines around? For example, you
might have put the definition of caller on a line above the
definition of NewTotal (which you can't do because NewTotal has
to be defined before you use it in the definition of caller .)
For practice, let's move the line with caller Denise on it to the
line below the line with caller Adam on it. Actually, we want to
insert it at that point. Make Denise's 1line the current 1line
then enter x and hit return. Now make Adam's line the current
line and enter u followed immediately by return. Now look at the
block.

THE INSERT BUFFER

The editor maintains an "insert" buffer. Any text which
follows p and u is placed into the insert buffer, and any 1line
deleted with =x is also placed into the insert buffer. If the u
or p command is entered and followed immediately with a return,
it uses the text in the insert buffer rather than what follows it
on the line you entered.

STRING EDITING COMMANDS

The string editing commands include commands to find,
delete, and insert strings. Make line 0 the current line, then
enter

f Adam

and hit return. Notice that the cursor (the caret) is positioned
immediately to the right of "Adam". Now enter f followed
immediately by return. That error message means that "Adam"
wasn't found. The f command starts searching at the current
cursor position and continues until an occurence of the string is
found or until the end of the block is reached in which case it
reports that it didn't find the string. When a string is not
found, the cursor remains where it was before the string was
searched for.

THE FIND BUFFER

The editor also maintains a "find buffer". Any string which
follows £ is placed into the find buffer. Whenever £ is followed
immediately by a return (or just one space) it will search for
the string which is already in the find buffer.

Frank Hogq Laboratory copyright 1983

A Tour De FORTH 43

Let's replace all the occurrences of "caller" with "Caller".
Make line 0 the current line, then enter

£f caller

and hit return. When the first 1line with "caller" on it is
printed, enter

r Caller

and hit return. Now enter £ followed immediately by hitting
return. The line with the next instance of "caller" on it will be
displayed. Enter r followed immediately by hitting return.
Continue until the editor reports that there are no more
instances of "caller" on the screen, then list the screen.

Once a string is found, it can be erased with the e command.
The d command combines the actions of £ and e . It will search
for the string which follows it (or which is in the find buffer
if it is immediately followed with return) then erase it.

Once the cursor has been positioned with one of the commands
that does searching, a string can be inserted at that point with
the i command. It will either insert the string which follows it
at the point where the cursor is positioned or it will insert the
string already in the insert buffer if i is followed immediately
by a return.

The till command deletes everything between the cursor and
the string which follows it (or is in the find buffer if till is
immediately followed by a return). till does not search beyond
the current line.

HOW TO INTERPRET A BLOCK

Now that we have some FORTH words on a block, we want to
have the interpreter interpret what's on the block instead of
stuff we enter at the keyboard. How is that done?

First, let's protect ourselves by entering flush and hitting
return. This will write the block we just edited to the disk.
Now, if something goes wrong and we crash, all the editing we did
will not be lost. Next, let's get rid of the words we have
entered from the keyboard so far. Enter empty and hit return.
Every word which has been defined since the computer was turned
on and FORTH started running will be erased from the dictionary.
Now enter 54 load and hit return. Once the interpreter sees load
it will stop interpreting the 1line we typed in and go and
interpret the text on block 54. The interpreter will interpret

copyright 1983 Frank Hogg Laboratory

44 A Tour De FORTRH

everything on the block until it reaches the end of the block or
until something happens to keep it from reaching the end of the
block. Once it finisbes doing that it will continue interpreting
any text which follows load . Since there isn't any, it will
just say "ok" and wait for us to enter another line.

ERRORS WHILE LOADING

It is quite possible, of course, that loading did not go
"ok". Typically, this happens when a word has been mis-spelled.
As usual, FORTH will print out the word followed by a question
mark.

Let's make this happen and see how to correct it. Make line
0 the current line, then enter

f Adam

and hit return. Then enter
f Caller

and hit return. Then enter
r caller

and hit return. This block defines Caller but it does not define
caller because eFORTH does not believe that "c" is the same as
"C". Now enter empty 54 load and hit return. When the
interpreter finds caller on the block, it will not find it in the
dictionary or be able to convert it to a number, so it gives up
and tells you it couldn't do anything with it. Now enter v and
hit return. The cursor will be positioned immediately after the
offending word. Since you know what is wrong with it, fix it by
entering

r Caller

then enter empty 54 load and hit return.

ANSWERING THE PHONE PROBLEM

Remember the problem we left you hanging with at the end of
the previous chapter? Here we have the solution. Simply remove
the phone application words from the dictionary with empty or
forget and 1load them again. Everything will be properly
initialized.

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 45

BACK TO THE RESTAURANT

Let's put the restaurant application words onto blocks.

This is a test, so you're on your own except for the following
suggestions. Make sure each block you use is empty, and wipe it
before putting anything on it. Put the definitions of Total and
for is and price onto block 58. Put the things defined with
price onto block 59. Now put the following lines onto block 57:

58 load
59 load
exit

exit will cause the interpreter to stop interpreting the block.
Since there isn't much on the block, we put it there so the
interpreter won't waste time looking for words in all that empty
space.

Block 57 1is called@ a "load" block. All it does is control
the loading of all of the blocks which contain words related to
an application. All we have to do to load all of our restaurant
application words is enter 57 load and hit return.

HOW DID YOU DO?

Ready? Did you start a comment on 1line 0 of all three
blocks including block 57? You'd better, or the interpreter will
find your initials (or the date) and not know what to do with
them. Did you flush your work to the disk? All set? Enter empty
57 load and sit back. Rats! When we executed empty we removed
scale and $. from the dictionary. We will have to put them back
by loading block 54 again. However, it was real handy to use
empty when we encountered an error, fixed it, and re-loaded.
What can we do?

Try this. Enter

e RERERR o
. 1

then enter 57 list to make block 57 the current block, then enter
0 t to make line 0 the current line, then use the u command as
follows:

u fotget L2 2 2 1] e *kkh% H

Now when we 1load block 57 it will forget **#*%*%* angd everything
that was added to the dictionary before the error. Then #*#**%% jg
redefined so that we are all set up to do the same thing in case
we run into another mistake. Now load block 57. If you get an

copyright 1983 Frank Hogg Laboratory

46 A Tour De FORTH

error, fix it, and load block 57 again. Simple. When we enter
words this word is real easy to see, and we can tell where, in
the list of words, our application begins.

Once we have successfully loaded all the words in our
application and we are satisfied that they are working correctly,
we can erase line 1 on block 54. 1It's just a program development
tool.

THE ANSWERS, PLEASE

At the end of this chapter there is a listing which shows
what your blocks should look like at this point. The vertical
bar on block 57 is a special eFORTH word which tells the
interpreter to skip the remainder of the line. So, we follow it
with at 1least one space then use the rest of the line for
comments. Are there any questions?

ELIMINATING CRAMPS

Block 54 is very crowded. List it. Now enter n 1 and hit
return. The n command makes the "next" block the current block
(in this case, block 55). wipe it then enter b 1 which makes the
current block go "back"™ one block. Notice the line that the
first caller is defined on. It should be line 10. Now enter n
to make block 55 the current block then enter 1 t to make line 1
the current line. Now enter

54 10 g

and hit return. This line "gets" line 10 on block 54 and inserts
it under the current 1line of the current block. So, we have
copied line 10 on block 54 to line 2 on block 55. Enter

54 11 3 gets

which will copy 3 lines beginning with line 11 on block 54 to the
three 1lines under the current line on the current block. Notice
that this command pushed the bottom three lines of block 55 off
of the block. They are gone forever.

Now enter b 10 t then enter x x x x which will erase the

lines on block 54 that were copied to block 55. We have
effectively moved them from block 54 to block 55.

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 47

One minor problem remains. Now, when we load block 54, the
words on block 55 are not loaded as well. They should be. A
quick solution is to make line 14 (or some line near the bottom)
of block 54 the current line, then enter

p —>

and hit return. This puts the "arrow" on that 1line. When the
arrow is executed by the interpreter, it stops loading of the
current block and forces loading to continue with the next block.
Any text on block 54 which follows the arrow will be ignored by
the interpreter.

BLOCK EDITING COMMANDS

Entire blocks can be moved around with the copy command.
For example, 54 55 copy will copy the entire contents of block 54
onto block 55. Any data previously on block 55 will be
destroyed.

A sequénce of blocks can be copied with the copies command.
Entering 54 84 3 copies will copy block 54 to block 84, block 55
to block 85, and block 56 to block 86.

A block that is not the current editing block can be wiped
clean with the clear command. Entering 54 clear will fill block
54 with spaces. Be careful! clear does not ask you if you are
sure. And if you enter 20 clear thinking the interpreter is in
base ten, you may be surprised to discover it was in base sixteen
and you have destroyed valuable data on block 32.

These words obviously provide other methods for eliminating
cramps.

DOCUMENTING YOUR APPLICATION
Once everything is working the way it should, you can print
a listing of the blocks which contain the source code of the
words in your application. For example, the listing in Appendix
C was printed by entering
print 0 72 show ok

The word print is defined to redirect all output generated by any
words which appear between it and ok to the printer.

copyright 1983 Frank Hogg Laboratory

48 A Tour De FORTH

The version of show which comes with eFORTH only prints
three blocks per page. If you have a printer which can be
configured to print 132 characters on a 1line, there is an
alternate version you can use which prints six blocks to a page.
It's on block 61.

Suppose you make a change to the source on block 55. To get
an updated listing, you only have to enter 55 listing which will
print out the page which contains block 55. You do not have to
print a new 1listing for the entire application or the entire
disk. The same block will always fall on the same place on the
same page.

Frank Hogg Laboratory copyright 1983

A Tour De FORTH

Block 8 ©4 Block 399
i NewTotal Caller NamesdfCallers 12:47pa cee 23jan84)
t S (n--)
$ ¢34 8 8 ascii . hold #s ascii $ hold % type ;
s scale {d --n)
dpl 3 8 3 within not
abort" Entry is out of range.”
drop 2 dpl 9 ?do base @ % loop ;
: NewTotal (ast adr --)
rscalerd d #dup $ ¥ '
s Caller (--) create 8 , does> NewTotal ;
18 Caller Adam (ast --)
11 Caller Betsy (aat --)
12 Caller Carl (ast --)
13 Caller Denise (ast --)
14
13

O O O N &y N i

Block 8 56 Block 57

8 (Menu Application Load Block

exit

O N A 3 N =

0

18
11
12
13
14
15

Block 8 58 Block §9
8 (Total and for is price 12:47pm cee 23janB4) (prices
1

; Total (-6 1 @
sis (n-—) §.

price { n ~~) scale create ; does* 9 + ; exit

- TR - o T P I)

0 as we
[

3

a

-— -
]

1

-—

9
16
11
12
13
14
13

copyright 1983

5B load
99 load

otal 1s for and price

1.93 price blt
1.25 price shake
H .75 price fries
i

49

Frank Hogg Laboratory

50 A Tour De FORTH

CAAPTER 6

DOES FORTH HAVE WHAT COUNTS?

FORTH implementations generally do not come with words which
have as their sole purpose the declaration and manipulation of
arrays as a separate data type. As usual, you may add your own
if the need arises. And you are surely thinking that the need
will inevitably arise. Of course it will, but the creation and
manipulation of arrays is quite easy with the FORTH tools already
at hand.

LET ME COUNT THE A's

A frequent application for which arrays are used is to count
things when there are a lot of the things to be counted. The
trick is to assign a number to each of the things, and use that
number as an index into the array. For example, let's count the
characters on a block and find out how many a's and other
characters there are on the block.

How many different characters are there? Current FORTH
standards specify that the internal representation of characters
shall be the ASCII character codes. In the ASCII character set
there are 96 printable characters and 32 control codes. The
ASCII codes start with zero and go as high as 127. So let's just
use the internal ASCII code of a character as the index into the
array. This means that our array will have to have 128 elements.

How 1large should each element be? Since we will also be
counting spaces, and since a block may be completely blank, we
may have to count as many as 1024 spaces. Hence, at the least,
each element of the array will have to be large enough to hold a
16-bit integer. We will have to reserve two bytes for each
element. Here's how to do it.

create Letters 256 allot

This line creates a word with the name Letters , then 256 bytes
(128 elements at two bytes each) are reserved which can be
accessed using the word Letters . When a word defined with
create is executed, it simply pushes an address to the stack. 1In
the case of Letters , this will be the address of the first byte
of the 256 which were allotted to Letters . Now, for any given

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 51

ASCII code, we can get the address of its element in the array by
multiplying its ASCII code by two (because we are using two bytes
for each element) then add that result to the address returned by
Letters . Here's the definition of a word which does this.

: letter (¢ — adr) 2* Letters + ;

Once we have the address of the element which corresponds to a
character what do we do with it? Just add one to the count which
is already stored there.

: CountOne (¢ ——) 1letter 1 swap +! ;

To count the characters on a block, we need to get the ASCII code
for each of the 1024 characters on a block and pass it to
CountOne to operate on. How do we do that?

Given the number of the block we want to process, we can use
block to get the address of the first byte (which holds the first
character) on that block. Adding one to that address gives the
address of the second byte, and so forth. The standard way to do
this sort of thing is to use a loop structure which will execute
1024 times and use the loop index to get each character on the
block. Here's how this is done in FORTH.

: Count (blk —)

Letters 256 erase initialize elements to 0)

(
scr ! (save the block number)
1024 0 do (begin the loop)
scr @ block (get the block address)
i+ (add the loop index to it)
cé (get ASCII code for i-th character)
CountOne (process it)
(

loop do it again)

The first line of this definition presets every element in
the array to zero. For convenience, the block number is stored
in the user variable scr which is a "side-effect" of executing
Count which you may not like. In a moment we will see how to
avoid it.

HOW DO LOOPS WORK?

For now, let's consider what happens when the sequence
1024 0 do executes. These words set up the execution of a loop
in FORTH. The two numbers are pushed to the stack, as usual,
then do removes them, fiddles with them slightly, then puts them
on the return stack. The zero becomes the initial value of the

copyright 1983 Prank Hogg Laboratory

52 A Tour De FORTH

loop index which means that the first time through the loop, the
word i , which returns the current 1loop index, will return a
zero. Each time the word loop executes, the index is incremented
by one, then it is compared to the loop "limit" which in this
case is 1024. As soon as the index equals the limit, the loop is
terminated, and execution continues with the word which follows
loop . So, the last time the loop executes, i returns 1023. 1In
this case, the "body" of the 1loop consists of all the words
between do and 1loop and they are the words which are executed
each time through the loop. The comments indicate what they do.

DO THE I's HAVE IT?

Obviously, reporting the number of times each character
appears in a block requires another loop. This time we must loop
through the array and print the contents of each element. Let's
think about what has to be done to process one character.

We should at least print out the character and its count.
To avoid formatting problems, let's just print one character per
line. We need a word, then, which will start a new 1line, print
the character, then print its count.

: ReportOne (c —-) cr dup emit letter @ . ;

Now we need a loop which goes through all the characters and
calls ReportOne for each one. To make it easy, let's not report
the counts of control codes. This means, though, that our loop
should not start with an initial index of zero. The first 32
ASCII codes (0 through 31) represent control codes which are not
printable characters on most devices. So the first value
returned by i should be 32 and the last should be 127.

: Report (=—) 128 32 do i ReportOne loop :;
Notice that the specified limit is 128 instead of 127. Recall
that loop adds one to the index and if it then equals the 1limit

the 1loop is terminated. Hence, the last time the body of the
loop executes, i returns 127.

Frank Hogg Laboratory copyright 1983

~

A Tour De FORTH 53

CAN I MAKE IT RUN FASTER?

Usually when a program is running too slowly, the culprit is
a loop which executes a large number of times. The best way to
speed things up is to try and cut down the time it takes the body
of the 1loop to execute. For example, suppose the body of the
loop in Count takes five seconds to execute. Since the body of
that loop executes 1024 times, shaving just one second off of the
time of the body of the loop will result in a savings of 1024
seconds each time Count executes. It so happens that Count is
not coded very efficiently. Notice that the address of the block
is calculated each time through the loop. It would be much more
efficient to calculate that address just once before the 1loop
begins, save it somewhere, and grab a copy of it each time
through the loop. 1In fact it would be even better if we didn't
have to add the wvalue of the index to that address. Why not
calculate that address and have it be the initial index? Then
each time through the 1loop, the index will be automatically
incremented to become the address of the next character on the
block.

s Count (--)
Letters 256 erase
block

(initialize elements to 0)

(adr of 1st char - initial index)
dup 1024 + (adr+l of last char - the limit)
swap (put them in the right order)
do (begin the loop)

i (address of current character)

ce (get the character)

CountOne (process it)

loop ; (do it again)

Notice that the body of the loop in this version contains far
fewer operations. More work has to be done before entering the
loop, but that work is done only once instead of 1024 times.
Notice one more thing. This version avoids the side-effect of
the earlier version: it does not change the contents of scr .

DON'T GO OUT OF BOUNDS

There is the possibility of disaster in our counting
program. The value of a byte, after all, can be as high as 255,
and there could well be a byte on a block which is greater than
127. What would happen? Clearly, letter would return an address
to something which is not in the Letters array. Consequently,
CountOne would increment something that probably should not be
incremented. What can be done to avoid this problem?

copyright 1983 Frank Hogg Laboratory

54 A Tour De FORTH

Other languages usually check that an index into an array is
within the declared dimensions of the array. However, this
checking takes additional time, and it is done whether you want
it to be or not. FORTH leaves it to you. It is up to you to
decide whether this check should be performed, and, if you
decide it should be, what to do when an index into an array is
out of bounds. This is obviously a case when we should check.
Now, what should be done when we find a byte which is greater
than 1272

Two strategies come to mind. The first is the strategy used
by other languages: abort the program. We can define a word such
as

e 2bounds (¢ =~) 0 128 within not
abort®™ index out of bounds.® ;

and change the defirition of CountOne as follows.

¢ CountOne (¢ —-) dup ?bounds letter 1 swap +! ;

The other stragegy is to continue processing. However, we
will have to decide what to do with bytes greater than 127. We
can either ignore them, or expand the size of Letters so we can
count them, or we can subract 128 from them and process them
normally. It's up to you, and it depends on what you are trying
to do.

WHAT'S YOUR SINE?

Another important use of arrays is the creation of tables of
constant data such as a tax table or other data that seldom, if
ever, changes. For example, it is a simple matter to create a
table of sines and use the angle as an index into the table to
get the sine for that angle. Wait a minute, you may be thinking,
that will only work if the angles are whole numbers; you can't
use a fraction as an index into an array. That's right.
However, in many cases (graphics, for example) eliminating
fractions may not result in any noticeable loss of accuracy, and
"calculating” a sine will be much faster. If you don't need nine
digits of floating point accuracy, why spend precious CPU time
extracting them?

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 55

Let's create a table which contains the sines for angles
from zero to ninety degrees. Here's how.

create SineTable

0000 , 0175 , 0349 , 0523 , 0698 , 0872 , 1045 , 1219 , 1392
1564 , 1736 , 1908 , 2079 , 2250 , 2419 , 2488 , 2756 , 2924
3090 , 3256 , 3420 , 3584 , 3746 , 3907 , 4067 , 4226 , 4384
4540 , 4695 , 4848 , 5000 , 5150 , 5299 , 5446 , 5592 , 5736
5878 , 6018 , 6157 , 6293 , 6428 , 6561 , 6691 , 6820 , 6947
7071 , 7193 , 7314 , 7431 , 7547 , 7660 , 7771 , 7880 , 7986
8090 , 8192 , 8290 , 8387 , 8480 , 8572 , 8660 , 8746 , 8829
8910 , 8999 , 9063 , 9135 , 9205 , 9272 , 9336 , 9397 , 9455
9511 , 9563 , 9613 , 9659 , 9703 , 9744 , 9781 , 9816 , 9848
lggzz ¢ 9903 , 9925 , 9945 , 9962 , 9976 , 9986 , 9994 , 9998
[4

When this FORTH code is interpreted, each number is placed on the
stack (as usual), then the comma puts it in the dictionary. The
first number is "comma'd" into the address returned when
SineTable executes. Hence, given an angle on the stack in the
range [0,90] we replace it with its sine by executing

: 8in90 (0-90 — sine) 2* SineTable + @ ;
(we must multiply by two because each sine occupies two bytes).

If the angle is in the range of [(0,180])] degrees, we can get
its sine from this same table by reflection.

: 8inl80 (0-180 — sine)
dup 90 > if 180 swap - then
2% SineTable + @ ;

and, for the first time, we see the FORTH version of the
"if-then" structure. As you might suspect, the usage of these
words in FORTH is the "reverse" of what it is in other languages.

IF...TREN
Enter the following definition from the keyboard
¢ IfTest if ." true" then ." continue® ;

then enter true Iffest and see what happens, then enter
false IfTest and see what happens. Notice that in both cases the
number is removed from the stack. When execution reaches if it
pulls the number on top of the stack and tests to see if it is
equal to zero. If it is, the words between if and then are
skipped, and execution continues with whatever words follow then

copyright 1983 Frank Hogg Laboratory

56 A Tour De FORTH

. But if the number is non-zero, the words between if and then
are executed.

So, in FORTH, the condition to be tested comes before the if
and the words to be executed if the condition is "true" (i.e.,
non-zero) come before the then .

IP. L J .ELSE. L] .Tﬂm

Can you have an "else" part? Sure, but its position is
reversed as well. Try the following.

s ElseTest if ." true " else ." false " then ." continue®" ;

Then test it by entering true ElseTest and false ElseTest and you
should have the idea. Now we can write a word which will handle
sines in the full range of 0 to 360 degrees.

: 8in360 (0-360 —— sine)
dup 180 > if 180 - sinl80 negate else 8inl80 then ;

WHAT DOES YOUR SINE LOOK LIKE?

Let's at 1least have the satisfaction of seeing something
done with these words. Try this.

stars (cnt =——) 0 do ascii * emit loop ;
bar (sine —) cr stars ;
SineWave (——) 360 0 do i s8in360 bar loop ;

and the results will be terrible. Why? A full cycle of a sine
wave will require printing 360 1lines which is six sheets of
paper! The obvious solution is to not print one 1line for each
degree. Instead, printing one line for every five or ten degrees
should give us the basic "picture". How do we implement the
obvious solution? Introducing the fabulous +loop which can be
used in place of loop to increment the index by some value other
than one each time through the loop. For example,

: SineWave (——) 360 0 do i sin360 bar 10 +loop ;

will increment the index by ten each time through the loop which
means that 8in360 will be called with values of 0, 10, 20, etc.

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 57

The fabulous +loop will even let us run through the indices
"backwards". For example,

: SineWave (—) 0 360 do i 8in360 bar -10 +loop ;

will call sin360 with angles of 360, 350, 340, etc. In this
case, 360 is the initial index, and 0 is the limit. There is one
slight catch when the limit is lower than the initial index and
the 1loop counts "down". The loop will not terminate until the
index value runs below the limit (instead of becoming equal to
it). For example, enter and execute the following

t:up 50doi . 1 +loop ;

t: down 0 5do i . -1 +loop ;

and notice the difference. The "up" loop will execute five times
with the index running from zero to four. The "down" loop will
execute six times with the index running from five to zero. Try
these again with increments of 2 and -2 and see what happens.

Even with these new versions of SineWave the results are
still terrible. The reason is that the number of stars printed
on a line could be -10,000 or +10,000. That range is a bit out
of whack considering that most display devices will handle no
more than 80 stars on a line. 1It's obvious that bar should scale
things down a bit.

Let's assume that we can get as many as 80 stars on a 1line.
That means that whatever value is given to bar should be scaled
so that it is in the range (-40,+40). We should then add 40 to
the result so that the loop limit is in the range [1,80]. If we
divide the sine by 300, the result will be in the desired range.
So, we end up with this.

: bar (sine —) 300 / 40 + cr stars ;

Although this 1isn't the most sophisticated application of
trigonometric functions, it is still interesting to note that our
"imprecise", "integer-only", "whole-degrees-only" (add your own
pejoratives here) method provides sine values which have greater
precision than we need.

INDEFINITE LOOPS

We have been 1looking at how to create program structures
which are known as "definite" loop structures. Before the 1loop
is entered, you know how many times it will execute. Sometimes,
you will want something to happen over and over again, but you

copyright 1983 Frank Hogg Laboratory

58 A Tour De FORTH

won't know how many times it should happen before you start doing
it. This latter type of loop structure is called an "indefinite"
loop.

For example, you might want to have the sine of 4000 degrees
or -10 degrees. 4000 degrees can be interpreted as going around
in a circle (to the right) over 10 times, and -20 degrees can be
interpreted as going around in a circle 20 degrees to the left.
Consequently, the sine of -20 degrees is equal to the sine of 340
degrees since turning 20 degrees to the left leaves you heading
in the same direction as turning 340 degrees to the right. And
turning 4000 degrees to the right leaves you heading in the same
direction as turning 40 degreesi to the right. You just don't get
as dizzy.

How might we convert any number of degrees to the equivalent
number of degrees within the [0,360] range? If the number of
degrees is positive and greater than 360, we can simply subtract
360 until the result is still positive and less than 361. Here's
how.

¢ Right360 (nl -- n2)
begin dup 360 > while 360 - repeat ;

If the number on the stack is greater than 360, a true flag is
left on the stack. If while sees a true flag on the stack (which
it removes) the words between while and repeat will be executed
(the body of the loop), then execution goes back to the point
marked by begin . Notice that the body of a "while" loop might
not be executed at all. Additional definitions will allow us to
get the correct sine for any number of degrees.

: Left360 (n1 -- n2)
begin dup 0< while 360 + repeat ;
: sin (degrees —- sine)
dup 0< if Left360 else Right360 then sin360 ;

This definition of sin is coded in such a way that the word
Left360 is only called with a negative number of degrees. Hence,
it will always add 360 to the number passed to it at least once.
Here is another way to code it.

: Left360 (nl —— n2)
begin 360 + dup -1 > until ;

The body of this "until" loop structure will always execute at
least once, and it will loop until the number is zero or greater.

Frank Hogg Laboratory copyright 1983

I

A Tour De FORTH 59

SOME ODDS AND ENDS

A few more details about definite loops should be mentioned.
Enter these words from the keyboard and try them out.

s up 40000 0 do i . 10000 +loop ;

Probably not what you expected. Enter 40000 . and see what |is
printed. The internal representation of 40,000 is interpreted by
FORTH as a negative number. The loop keeps going and adds 10,000
each time until the index overflows and becomes negative, then it
keeps on going until adding 10,000 reaches or passes that
negative limit. Try this one.

:up 0 0 do i . 10000 +1loop ;

Obviously this behavior of do can be most undesirable in some
situations. For example, imagine what would happen if you entered
0 stars . You would have to either hit the reset button or wait
until 65,526 stars are printed.

In situations such as stars there is a special word, ?2do ,
which can be used. If you enter

: stars (cnt —) 0 2do ascii * emit loop ;

then execute 0 stars , no stars will be printed; the body of the
loop will not be executed. Nothing will be printed if you enter
-5 stars because ?do is defined to not execute the body of the
loop if the limit is equal to or less than the initial index.

IT'S TIME TO leave

There are times when a loop should be terminated before it
has executed the predetermined number of times. For example,
look at the definition of s on block 41. This word is designed
to search for a string starting at the current block and the
blocks which follow it until reaching the block whose number is
on the stack. So, if the current block is block 12, entering

45 8 c/1

will search for the string "c/1" on all blocks from 12 to 45.
The basic structure of 8 is a loop with an initial index, in this
case, of 12, and a loop limit of 45. However, if an occurence of
the string is found, the line it is on should be printed out, and
execution of s should be terminated so that the user can replace
that string with something else (or perform some other operation
on it). This is what the word leave does. If the string is

copyright 1983 Frank Hogg Laboratory

60 A Tour De FORTH

found, the words between if and then are executed. When
execution finally gets to leave it immediately causes the loop to
be exited; execution continues with the word which follows loop .
Notice that the 45 will be left on the stack. This means that
entering s and hitting return will resume the search for "c/1".

A similar word, ?leave , expects a flag on the stack (which
it removes), and if the flag is true, it immediately terminates
the loop. If the flag is false, execution continues with the
word which follows ?leave .

Frank Hogg Laboratory copyright 1983

==

A Tour De FORTH

copyright 1983

61

Frank Hogg Laboratory

62 A Tour De FORTH

CHAPTER 7

WHAT'S IN A WORD?

The dictionary begins somewhere in low memory and grows
upward as words are added to it. Let's look at some of the
details of what is actually put into the dictionary when a word
is defined.

When the FORTH interpreter tackles a line such as
variable 1#

it finds variable in the dictionary and executes it. If you
recall, variable takes the next word in the input stream and puts
it in the dictionary as the name of a word. In this case the
word will be a variable and its initial value will be zero.

All defining words ultimately call create which puts in the
dictionary those elements which are common to every word in the
dictionary whether it is a variable, a constant, or a colon
definition. These elements are:

l. The link field,
2. The count byte,
3. The name of the word,
4. The code field,
5. The parameter field.

THE LINK FIELD

The first field in a dictionary entry is called the "link
field". It is the 16-bit address of the count byte of the
previous word (in the same vocabulary). The link field of the
last word in the vocabulary is zero. By following these links
every word in the vocabulary can be examined.

Frank Hogg Laboratory copyright 1983

'~

A Tour De FORTH 63

THE NAME FIELD

The count byte together with the characters which comprise
the word's name are collectivly called the word's "name field".
The lowest 5 bits of the count byte are reserved for the count of
characters in the word's name. Hence, a word's name may be up to
31 characters long. The sixth bit of the count byte is not used.
The seventh bit is called the "precedence bit". If this bit is
set, the word is an "immediate"” word. The point of this will be
discussed in a moment. Finally, the eighth bit of the count byte
is always set. So is the eighth bit of the last character in the
word's name. This allows dictionary scanning words to go from
one end of the name field to the other.

THE CODE FIELD

The third field in a dictionary entry is called the "code
field". This field contains a 16-bit address. At this address
will be found machine code which is to be executed whenever the
word is executed.

THE PARAMETER FIELD

The last field is called the "parameter field". This field
can be as short as a single byte or as long as several thousand.
The nature of its contents can vary just as widely. In short,
the parameter field contains some type of data. The code field
points to a machine 1language program which determines what is
done with that data.

VARIABLES
Once again, take the simple case of a variable. When

variable 1%

is interpreted, variable calls create which creates the new
word's 1link field, name field, and reserves space for the code
field. variable then fills in the code field with the address of
a machine language routine which performs the operation
associated with variables: pushing the address of the wvariable's
parameter field to the stack. Finally, variable reserves two
bytes in the dictionary for the new word's parameter field and
stores a zero there. Here is a picture of the order of things in
memory after a variable is defined.

copyright 1983 Frank Hogg Laboratory

64 A Tour De FORTH

<

1 linkIfield 1
E count byte E :
R S
E codeifield ?
R

The word here always returns the address of the next free byte in
the dictionary. So every time something is compiled into the
dictionary the address returned by here is advanced.

CONSTANTS

When 31415 constant pi is interpreted, the actions taken are
identical to the previous description of what happens when a
variable is defined except that the code field of a constant is
filled with the address of a different machine language routine;
one which pushes the contents of the word's parameter field to
the <stack (instead of the address of the parameter field).

4

E— link|field E
i count byte i :
I P i i 1
| codeifield E
1 31415 E

L

Frank Hogg Laboratory copyright 1983

A Tour De FORTH : " 65

COLON DEFINITIONS
Things are a bit more involved for a colon definition. When
: binary 2 base ! ;

is interpreted, the colon is first found and executed. The colon
calls create which adds the appropriate link field and name field
to the dictionary and reserves space for the code field. The
colon then calls] which is the word which puts things into the
parameter field of the colon definition which is being compiled.
The semicolon at the end of a colon definition stops the
execution of 1 . Next, the code field is filled in with the
address of the appropriate machine code. Finally, the new word
is added to the dictionary so that other words can use it.

What, you may be wondering, is put into the parameter field
of a colon definition? The answer 1is quite simple. The
parameter field of a colon definition is a 1list of code field
addresses. Here is what binary looks like.

| link|field g
> 4— +
| count byte |
| b i
| n a
r Y
codelfield
cfa of 2

cfa of base

cfa of !

cfa of exit

- = e = e
G mm e P wm o wmh ek ww e e -

e wm ofe = g

Converting the source text of a colon definition into this list
of code field addresses is called "compiling".

copyright 1983 FPrank Hogg Laboratory

66 A Tour De FORTH

COMPILATION

In FORTH, compiling is a very simple process. The lion's
share of this work is done by the word 1 which was mentioned
earlier. For the sake of convenience, we will refer to this word
as "the compiler". Here is its definition: 2

t] (==

true state ! indicate that compiling is in process)

(
begin (start an infinite loop)
bl word (get next word from the input stream)
find (search for it)
2dup (was it found?)
if (it was found)
192 < (is it an immediate word?)
if (it is not immediate)
v (compile its code field address)
else (it is immediate)
execute (execute it instead of compiling it)
?stack (check for stack underflow)
then
else (it wasn't found)

(number) (see if it's a number)
[compile] literal (compile the number)
then
again ; (process the next word)

It should be fairly clear how this word works, but a few comments
are in order. Notice that word is used to get words from the
"input stream". If you entered a definition at the keyboard,
then word simply gets each word you typed. 1If you are loading a
block with a colon definition on it, then word gets each word in
that definition off of the block being loaded. word is smart
enough to know where it is supposed to get the next word.

Next, the word is searched for in the dictionary. If it is
not found, (number) is called to see if the word can be
interpreted as a number. If not, (number) prints an error
message and aborts the whole process. Otherwise, the number is
left on the stack, and literal removes it and compiles stuff so
that when the word being defined is executed, the number is
pushed to the stack. How this is done is discussed in the next
chapter.

If the word is found in the dictionary, then that word is
either an "immediate" word or it is not. If not, its execution
address (code field address) is "compiled" into the dictionary by
the comma. This address was left on the stack by find and the
comma just removes it and sticks it in the dictionary after
reserving two bytes for it.

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 67

If the word is immediate, then it is executed, after which
we check for stack underflow.

Since this "compiling loop" is an infinite loop, you may be
wondering how the compiling process ever stops. Look at the
definition of binary again. When the colon executes, it adds
binary to the dictionary, then calls 1 which compiles the
execution address of 2 and base and ! into the parameter field
of binary (adding two more bytes to its size each time).
Finally,] fetches the semicolon from the input stream and finds
it in the dictionary. What happens now? Does] compile the
semicolon's execution address into the dictionary and go on to
the next word and compile its execution address into the
dictionary? Hopefully not. The semicolon should, among other
things, terminate compilation.

IMMEDIATE WORDS

The solution is to devise some way of having certain special
words, such as the semicolon, executed by the compiler. These
words are called immediate words and this explains the existence
of the precedence bit in a word's count byte. In short, if a
word is an immediate word, its precedence bit is set and the
compiler will always execute this word.

The semicolon is an obvious candidate for being an immediate
word, and it is. Here is its definition:

: 3 (—) compile exit r> drop ; immediate

When it executes, it compiles exit into the dictionary (which
shows that 1 isn't the only word that can compile things), then
it removes a number from the return stack and throws it away
which clearly violates the rules for good use of the return
stack. Why is this done? This is the way the infinite loop in]
is terminated. We will take up the details in the next chapter.

The word immediate which follows the semicolon in the
definition of the semicolon simply marks the previously defined
word as being an immediate word by setting its precedence bit in
its count byte.

copyright 1983 Prank Hogg Laboratory

68 A Tour De FORTH

COMPILE TIME AND RUN TIME

Look at the definition of] again, and notice that 1literal
is preceded with [compile]l . Why? It turns out that literal is
an immediate word. Consequently, it would normally execute when
] 1is being compiled, rather than 1later when] is executed.
Instead, the use of [compile] forces literal to execute when] is
executed, not when it 1is compiled. Let's look at this in a
little more detail.

The word literal is typically used as follows:
¢ linel5 (blk —— adr) block [15 c/1 *] literal + ;

Given a block number, this word returns the address cf the first
character on the last line of that block.

COMPILE TIME

The phrase "compile time" refers to the time when linel5 is
compiled (added to the dictionary). What happens at this time?
Once the colon executes and adds an entry for 1linel5 to the
dictionary, it calls 1 to start compiling which means that the
execution address of block is compiled into the parameter field
of 1linel5 . However, the word [stops compiling and begins
interpretation again. This means that 15 is pushed to the stack,
then c¢/1 executes which pushes 64 to the stack, then * executes
which pulls 15 and 64 from the stack and leaves 960 on the stack.
Then,] executes which stops interpretation and resumes
compilation. Since literal is an immediate word, it executes
anyway, and removes 960 from the stack and puts it into the
parameter field of l1linel5 so that when linel5 executes, 960 will
be pushed to the stack. Then the plus is compiled, and, finally,
the semicolon executes.

RUN TIME

The phrase "run time" refers to any time when 1linel5 is
executed. What happens at this time? When 1linel5 is later
executed, block is executed which leaves an address on the stack,
then 960 1is pushed to the stack, then + is executed which adds
960 to the buffer address left by block and that's it. This
distinction between compile time and run time is important.
Remember that immediate words are executed at compile time.

Frank Hogg Laboratory copyright 1983

W

A Tour De FORTH 69

It so happens that [compilel] is also an immediate word, so
it executes when] is compiled. What it does, is get the next
word (which, in this case, is literal) from the input strear and
compile it. So it 1is there to prevent 1literal f{rom being
executed when] is compiled. It forces literal to be compiled so
that it will be part of the run time behavior of 1 .

CODE DEFINITIONS

Many words in the dictionary are not defined with the colon
or with wvariable or with constant . Many are defined with code
which allows yocu to define words in terms of machine code instead
of ir terms of other words. In this way you may add new
"primitive" operations to FORTH including routines which will
respond to interrupts and which do other hardware related
processing. Sometimes you may want to define worcs with code
irstead of the colon simply because you want them to execute as
fast as possible.

Writing code definitions is greatly simplified if &n
assembler vocabulary is available for your particular CPU. The
assembler vocabulary supplied with eFORTH will be described
later.

copyright 1983 Frank Hogg Laboratory

70 A Tour De FORTH

CHAPTER 8

HOW DOES FORTH WORK?

FORTH is most commonly implemented on any given CPBU by
writing code for that CPU which will simulate an abstract
computer here referred to as the "FORTE machine". The only
function of the FGRTH machine is to execute lists of code field
addresses; i.e., the 1list of code field addresses in the
parameter field of a colon definition. 1In installations of this
sort, the only thing done by a cold start routine which gets
FORTH running is to initialize the host CPU registers, then to
start tle simulated FORTH machine (sometimes referred to as the
"virtual machine").

If you are using eFORTH, the FORTH machine is running the
entire time you are using FORTH. Your CPU is simply executing
routines which simulate various operations of the FORTH machine.
Since your proficiency as a FORTH programmer will be enhanced by
understanding the operation of the FORTH machine, we shall
describe it in detail.

THE FORTH MACHINE'S REGISTERS
The FORTH machine has five registers. They are

l. IP - The instruction pointer,

2. W - The word pointer,

3. SP - The pointer to the parameter stack,
4. RP - The pointer to the return stack.

5. OP - The user pointer

The stack pointer, SP, always points to the last number which was
pushed to the parameter stack. The return stack pointer, RP,
always points to the last return address which was pushed to the
return stack. The user pointer, UP, points to the origin of the
"user variable area". This area makes it possible to implement
multi-tasking in FORTH. It is possible to connect two terminals
to a computer running FORTH and have two people using FORTE at
the same time. Obviously, they should have separate copies of
variables such as base and others. eFORTH can be expanded to
support multi-tasking.

Frank Hoggqg Laboratory copyright 1983

A Tour De FORTH 71

The word pointer, W, points to the code field of the word
being executed. The instruction pointer, IP, always points to a
location inside some colon definition's parameter field. This
location, you recall, contains an execution address. The code
field which this execution address points to contains another
address which, finally, points to machine code the host CPU can
execute. All of this is clearly indirect but, ultimately, quite
simple and powerful.

All the FORTH machine has to do is somehow see to it that
the machine code ultimately pointed to ty the code field address
which IP points to is executed and then arrange things so that
the next code field address is pointed to by IP and the machine
code which it ultimately points to is executed, etc. This basic
operation of the FORTH machine is usually implemented in a host
CPU machine code routine called NEXT which is also referred to as
the "inner interpreter” or "address interpreter". This
terminology is intended to distinguish NEXT from the "outer
interpreter" or input text interpreter.

WHO'S NEXT?

Implementations of NEXT are either pre-increment or
post-increment depending on which is most efficient to implement
on the host CPU. The post-increment version is more common. It
assures that when NEXT is first entered, IP points to the code
field address to be processed. This code field address is lcaded
into the W register, IP is advanced to point to the next code
field address, and the word whose execution address is in W is
executed.

In pre-increment versions, when NEXT is first entered, IP
points to the code field address of the word which was just
executed. So, IP is advanced to the next code field address andg
it is processed as before. W 1is 1loaded with the code field
address now pointed to by IP and the word whose code field is
pointed to by W is executed.

IMPLEMENTING THE FORTH MACHINE

A FORTH machine is implemented on a given CPU by deciding
how to handle the FORTH machine's registers, then writing
suitable code for NEXT, DOCOL, EXIT and other primitives required
by FORTH. If your FORTH programming will always be restricted to
creating colon definitions, you need not be concerned with the
details of how the FORTH machine was implemented on your CPU
(other than knowing whether it is a pre-increment or

copyright 1983 Frank Hogg Laboratory

72 A Tour De FORTH

post-increment machine). You only need to know how the FORTH
machine works. But, if you intend to write code defiritions
which use the FORTH machine's parameter stack, you must know how
to find the pointer to the top of the parameter stack. Is it one
of your CPU's registers or does your implementation hold it in
memory somewhere?

Here are the answers to these question for eFORTH users.

THE eFORTH 6809 FORTH MACHINE

Here is a brief discussion of the implementation of the
FORTH machine in the 6809 version of eFCRTH.

Consicerations of efficiency suggest that if it is at all
possible, the FORTH machine registers should be implemented with
registers cn the host CPU. Fortunately, the 6809 has barely
enough registers to do this. The 6809 Y register serves as the
FORTE macbine's IP register, the 6809 X register serves as the
FORTH machine's W register, the 6809 U register serves as the
FORTH machine's SP register, the 6809 stack pointer serves as the
FORTH machine's RP register, and the 6809 DP register serves as
the FORTH machine's UP register. Accordingly, NEXT, DOCOL, and
EXIT are coded in standard 6809 assembly language as

* Y POINTS TO THE CODE FIELD ADDRESS TO BE EXECUTED
NEXT LDX 1 YH+ POINT W TO CODE FIELD

JMP [,X] EXECUTE CODE

* X POINTS TO THE WORD'S CODE FIELD

DOCOL PSHS Y SAVE IP ON THE RETURN STACK
LEAY 2,X POINT IP TO FIRST CODE FIELD ADDRESS
BRA NEXT

EXIT POLS Y GET RETURN ADDR INTO IP

BRA NEXT

Notice that NEXT implements a post-increment version of the FORTH
machine. Clearly the 6809 architecture permits an efficient
implementation of the FORTH machine.

THE INTERPRETER

It so happens that the interpreter is itself defired with
the colon. In other words, it is a word in the dictionary (its
name is interpret), and its parameter field is a 1list of
execution addresses. Here is its definition:

Frank Hogg Laboratory copyright 1983

L
i

A Tour De FORTH 73

: interpret (—)
begin

false state ! (indicate interpretation is in process)
o (get the next word and search for it)
if (it wasn't found)
h'number e (get the execution address of number)
then
execute (execute the execution adr on the stack)
?stack (check for stack underflow)

again ; (interpret the next word)

This word makes sure that the value in the variable state
indicates that interpretation is in process (instead of
compilation). Then the next word in the input stream is fetched
and searched for in the dictionary. Now the code gets a little
"tricky®. If the word isn't found, the execution address of the
word which attempts number conversion is put on the stack. The
address of the string to be converted is left under it. If the
word is found, its execution address is 1left on the stack.
Either way, by the time things get to execute , there 1is an
execution address on the stack of a word to be executed. After
the word is executed, the stack is checked, and the process is
repeated (another infinite loop).

Suppose the interpreter finds binary in the input stream,
and that it has been defined. Ultimately, binary will find its
execution address on the stack, and interpret will execute it.
What happens when binary is executed?

Well, the execution address of execute is in the parameter
field of interpret , and when execute finishes (by executing
binary), FORTH should go on to execute the word whose execution
address follows that of execute in the parameter field of
interpret (which happens to be the execution address of ?stack).

Obviously, FORTH has to remember where it should go back to.
This is the job performed by DOCOL. In the case of binary , for
example, this code pushes the address in IP to the return stack,
then loads IP with the address of the parameter field of binary .
The words whose execution addresses are in the parameter field of
binary are executed including exit . When exit executes, it
pulls the address on the return stack and puts it back into IP,
and the execution of 1 is resumed (by executing ?stack). This
is why you must be extremely careful when using the return stack.

This is also why the semicolon is coded the way it is. When
] found the semicolon and noticed that it was immediate, it
executed it. Since the semicolon is defined with the colon, it
first pushes the address in 1IP to the return stack, then the
words in the semicolon's parameter field are executed. The
phrase r> drop removes the address on the return stack and throws

copyright 1983 Prank Hogg Laboratory

74 A Tour De FORTH

it away. This exposes the address of a word in the parameter
field of the colon (which called] in the first place.) So, when
exit at the end of the semicolon executes, it returns to the
colon instead of the compiler. This is how the infinite loop is
terminated.

Frank Hogg Laboratory copyright 1983

o~

A Tour De FORTRH

copyright 1983

75

Frank Hoggqg Laboratory

76 A Tour De FORTH

CHAPTER 9

HOW DOES FORTH COMPILE NUMBERS?

Recall the definition of binary which was
: binary 2 base ! ;

and recall that 2 is in the dictionary. That fact, that 2 is a
defined word, resulted in FORTH compiling the execution address
of 2 into the dictionary when binary was compiled

NUMERIC LITERALS
But what does FORTH do when it compiles something like
s octal 8 base ! ;

when a number such as 8 is not in the dictionary? Unlike 2, 8
has not been defined as a constant. It is referred to as a
literal value; instead of being the name of a constant or
variable, it is to be interpreted, literally, as the number 8.

Since 8 1is not the name of a word in the dictionary, the
interpreter cannot compile its execution address into the
dictionary because 8 is not the name of anything which has an
execution address. FORTH handles this sort of situation by using
the special word (literal) . Look at the definition of] again
and notice that when it gets a string from the input stream which
is not in the dictionary but can be converted to a number, it
leaves that number on the stack and calls 1literal which first
compiles the execution address of (literal) into the dictionary,
then it compiles the number into the dictionary. The number is
then referred to as an "in-line parameter"; it is compiled
in-line with the execution address of the word which will use
it. This word is (literal) .

(literal) is a code definition; a machine language
primitive. Here is what happens when it executes. Given the
current value of the FORTH machine's IP register, (literal) can
find the literal number which was compiled with it. 1In the 6809
eFORTH implementation, IP is already pointing two bytes beyond
the execution address of (literal) . The number which was

Prank Hogg Laboratory copyright 1983

A Tour De FORTH 77

compiled in-line with (literal) is at this address. So,
(literal) gets it and pushes it to the stack, then advances IP
two bytes to skip over the number. This prevents the FORTH
MACHINE from interpreting the number as an execution address. 1In
general, NEXT advances IP two bytes each time NEXT is executed
because each execution address is two bytes long. However, when
(literal) executes, IP is advanced a total of four bytes; two for
the execution address of (literal) , and two for the number which
follows it.

linkIfield
count byte i o
c T t
a : 1
codelfield

cfa of (literal)

T

cfa of.bése

cfa of !

cfa of exit

T

e K —q-—qh-lb—dh—ir—qb-—q.-q-

-U-_-(bg_qbﬂqb—qh—n#--{pm-p—q--{b—-n

BRANCHING

In-line parameters are also used for the words in FORTH
which control program flow. In short, what is compiled into the
dictionary when FORTH runs into words such as if , else , then
and others? The word if , for example, should cause segments of
execution addresses to be skipped over when the condition
preceding it is not satisfied. If the condition is satisfied,
and execution reaches the else , program flow should skip over
the execution addresses compiled between the else and then . How
does FORTH handle the compilation of these words?

As it happens, they are immediate words; they are always
executed even when PFORTH is in the compiling state. What they
must ultimately do is compile words into the dictionary which
will cause the FORTH machine to skip over segments of execution

copyright 1983 FPrank Hogg Laboratory

78 A Tour De FORTH

addresses. This is handled quite easily by manipulating the
contents of the IP register. One such word is branch . It
always causes a branch, but, we might ask, to where? That
depends. The number of execution addresses to be skipped can
vary depending on how many words occur between if and else , for
example. Accordingly, branch is always followed by an in-line
parameter which contains the address to branch to. All branch
has to do is put this address into the IP register.

branch always branches, so if must compile some other word
into the dictionary; a word which will branch or not depending on
what is on the stack. This is the function of Obranch which will
cause a branch if the number on the stack is zero; otherwise
execution continues with the execution address which follows the
in-line parameter which follows Obranch .

Let's look at what happens when the interpreter runs into a
definition such as

: 0= if false else true then:;

First, 0= 1is added to the dictionary. Since if is an immediate
word, it is executed. Here is the definition of if :

: if (-— adr) compile Obranch here 0 , ; immediate

The word immediate which follows the definition of if sets its
precedence bit which is what makes if an immediate word.

When the phrase compile Obranch executes, the execution
address of Obranch is compiled into the dictionary (as part of
the definition of 0= remember?). Then here 1is executed which
pushes the address of the next free byte in the dictionary to the
stack. (This address will later be used by else .) Next, the
phrase 0 , causes a zero to be compiled into the dictionary.

Let's take a closer look at the sequence here 0 , in the
definition of if . The comma compiles whatever number is on the
stack into the dictionary. 1In this case, a zero. The address
which here pushed to the stack points to this zero. The zero,
of course, is the in-line parameter for Obranch to use when it
executes. Why is a zero used? Because at this point FORTH has no
idea of what this in-line parameter should be. Ultimately, it
should be an address which Obranch will place in the IP register.
This is called an "unresolved forward reference" and it will have
to be "resolved" later.

Remember, if should cause the words between it and else to
be executed if the top of the stack is true (non-zero). If the
top of the stack is zero, if should cause these words to be
skipped and the words between else and then should be executed.

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 79

So, for the time being, the Obranch in-line parameter is set to
zero. It will be changed to the appropriate address when that
address is known.

When will that address be known? When else executes. Here
is the definition of else :

: else (adrl -—- adr2)
compile branch here 0 ,
swap here swap ! ; immediate

First, branch is compiled into the dictionary with zero as a
temporary parameter and here pushes the address of this parameter
to the stack so that then can change it to what it should be.
The point of this is to branch over the "else" part of the
conditional when the "true" part has been executed. Next, this
address is swapped with the one 1left on the stack by if
(remember?).

We now know what the parameter of Obranch compiled by if
should be; it should cause a branch to the next word compiled
into the dictionary. The current address of this word |is
returned by here . So, s8wap gets the address of the in-line
parameter which follows Obranch (which was compiled by if) onto
the top of the stack. Next, here puts the address to which
Obranch should branch onto the stack, but they are in the wrong
order, so swap fixes this problem, and the correct address
finally replaces the zero which was temporarily compiled as the
in-line parameter. And the unresolved forward reference created
by if has been resolved. Notice that the address of the in-line
parameter of branch compiled by else is still on the stack. This
unresolved forward reference will be resolved by then . Here is
the definition of then :

: then (adr —) here swap ! ; immediate

It just resolves the forward reference at the address on the
stack.

eFORTH provides tools which make it very easy to create and
resolve forward references. Here are better definitions of the
program structuring words. v

if system compile Obranch forward ; immediate
else system compile branch forward

swap resolve ; immediate
then system resolve ; immediate

Notice that the system vocabulary is specified because some of
the words in these definitions are in that vocabulary.

copyright 1983 Frank Hogg Laboratory

80 A Tour De FORTH

When 0= is finally compiled here is what it looks like.

4

| link|field]

j count byte E :

i 0 ; =]
address E codeifield i
1000 E cfa of:obranch E
1002 i 1oio E
1004 i cfa of:false i
1006 f cfa ofi?ranch ?
1008 i 1oi2 E
1010 i cfa of;true i
1012 i cfa of:exit i

v

WHEN if COMPILES

Let's consider what happens when the definition of if is
compiled. First, the colon is fetched from the input stream and
executed creating the name, link, and code fields for if . Then
FORTH is put into the compilation state and the execution address
of compile is compiled into the dictionary. The same thing
happens to Obranch and forward . The semicolon terminates
compilation and compiles exit at the end of the list of execution
addresses. immediate is executed which sets its precedence bit.
Nothing extraordinary about it at all. All the magic occurs when
if executes, not when it is compiled. :

HOW compile WORKS

A brief word should be said about the behavior of compile
when it executes. It is another word which expects an in-line
parameter. In the definition of if , that in-line parameter
should be the execution address of Obranch and, indeed, when if
is compiled, the execution address of Obranch is compiled

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 81

immediately after the execution address of compile . When if is
executed, the FORTH machine will eventually reach the execution
address of compile and execute it. What happens?

Here is the definition of compile :
: compile r> dup @ , 2+ >r ;

Notice that this definition appears at first glance to satisfy
the rule which requires that every >r be balanced with a r> in
the same definition. However, they are backwards. Instead of
pushing something to the return stack with >r and getting it back
with r> , compile pulls a number from the return stack, uses it
to fetch something to the stack, increments it by two, then
replaces it. What number is on the return stack when compile
executes, and what is the purpose of this apparently "illegal"”
use of r> and >r ?

The number on the return stack is the return address saved
when compile was called. This return address points to a
location in the parameter field of if . Assuming a
post-increment implementation of the FORTH MACHINE, the return
address on the return stack will be pointing two bytes beyond the
execution address of compile ; that is, pointing to the execution
address of Obranch . The job of compile is to put the execution
address of whatever word follows it into the dictionary.
Whenever compile is executed, the address on the return stack
will point to the execution address which compile is to put into
the dictionary. Consequently, r> is used to fetch this address.
It is duplicated, the copy is used to get the execution address
to be compiled with the comma, then the return address is
incremented by two to skip over the execution address to be
compiled by compile .

In the case of the compile in the definition of if , when
compile executes, the return address points to the execution
address of Obranch which immediately follows the execution
address of compile in the parameter field of if . compile uses
this address to fetch the execution address of Obranch to the
stack ‘and uses the comma to compile it into the parameter field
of whatever word is being defined when if is executed. compile
then advances the return address by two so that the next word in
the parameter field of if to be executed is forward instead of
Obranch .

compile is a clear example of a word that would have to be
defined differently for implementations of FORTH which do not put
post-incremented return addresses on the return stack.

copyright 1983 Frank Hogg Laboratory

82 A Tour De FORTH

STRING LITERALS

What does the compiler do when it runs into a string
literal? For example, recall our very first FORTH word.

¢t hi ." hello” ;

What does the compiler do with the string so that when hi
executes the string is printed out?

Actually, the compiler doesn't do anything with it. It
turns out that .®" is an immediate word, so the compiler just
executes it. It is ." that has to do all of the work. What does
it do? Let's look at its definition.

: ." (-—) system compile (.")
ascii " word c@ 1+ allot ;

The first line compiles a special run-time word, and the second
line gets the next string in the input stream delimited by the
double quote mark. This word is moved to here but the byte at
here contains the number of characters in the string. We use c@
to get this count onto the stack, add one to it, and use allot to
advance the address returned by here by that amount.

In short, the string, preceded by its count, is compiled
into the dictionary as part of the parameter field of hi . Here
is what hi looks like after it is compiled.

cfa of (.")

E linkifield E
i count byte i i
1 h i

i codeifield

!

i

LI R R R I RN R

5 - h
i e : 1
i 1 : o
i cfa oé exit

nl

What does (.") do? It must print out the string, then it must
arrange things so that exit is the next word executed after the

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 83

string is printed. This means that (.") must 1leave the 1IP
register pointing to the right place. Here is one way of coding
.." .

¢ (") (-—) > count 2dup type + >r ;

Notice that it uses the same trick with the return stack that
compile used. When (.") starts executing, the address on the
return stack is the address of the byte which holds the count of
characters in the string to be printed. So, we get this address
and execute count which adds one to the address (giving the
address of the first character in the string), then pushes the
count of characters in the string on top of it. These are the
parameters we must give to type . But first, we copy the address
and the count. The copies are removed by type then the originals
are added together. Magically, the result is the address of the
first byte past the string. As you can see, this address
contains the execution address of exit so we return it to the
return stack and everything works out just right.

copyright 1983 Frank Hogg Laboratory

84 A Tour De FORTH

CBAPTER 10

VOCABULARIES

Vocabularies. are used to separate applications. For
example, eFORTH is supplied with five vocabularies, forth ,
system , editor , assembler and disking . The words in these
vocabularies are used in rather dissimilar situations, so they
are separated in a way that allows the words they contain to be
removed from dictionary searches when they aren't needed. This
has the advantage of cutting down on dictionary search times
during compilation. Furthermore, the same word can be defined to
do different things in different vocabularies.

CONTEXT AND CURRENT VOCABULARIES

As mentioned in Chapter 2, the context vocabulary is the
vocabulary which is searched first, and the current vocabulary is
the vocabulary to which new words are added. A vocabulary is
made the context vocabulary by simply executing its name, and a
vocabulary is made the current vocabulary by first making it the
context vocabulary, then executing definitions .

CREATING NEW VOCABULARIES

A new vocabulary is created with the defining word
vocabulary followed by the name of the new vocabulary. Entering
vocabulary files immediate will create a new vocabulary named
"files". Any word which specifies a vocabulary should be declared
to be an immediate word. We shall see why in a moment. Entering
files definitions will then cause subsequently defined words to
be added to the files vocabulary. With eFORTH, no more than ten
vocabularies should be created.

VOCABULARY CHAINING

When a vocabulary is created, it is "chained" to the current
vocabulary. In eFORTH, the system , editor and assembler
vocabularies are each chained to the forth vocabulary. However,
the disking vocabulary is chained to the system vocabulary. This

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 85

means that if forth is the context vocabulary, to use words in
the disking vocabulary, you must enter system then disking . The
point of this is that the disking vocabulary contains very
powerful words which can cause a great deal of damage to data on
your disks. This scheme decreases the likelihood that they will
be accidentally executed.

The vocabulary structure is a "tree" structure, and the
forth vocabulary is the "root® of the tree. Chaining is of
significance when the interpreter (or the compiler) is looking
for a word in the dictionary.

DICTIONARY SEARCHING

whenever the dictionary is searched by words such as ' or -'
or find , the context vocabulary is searched first. If the word
is not found in the context vocabulary, the current vocabulary is
searched (if it is different from the context vocabulary). If at
this point the word still hasn't been found, the vocabulary to
which the current vocabulary is chained is searched. This chain
is followed until the forth vocabulary is finally reached and
searched. (Vocabularies to which the context vocabulary is
chained are not searched.)

Look at the definitions of t and v on block 18. We want to
be able to execute them no matter what the context vocabulary is,
so we put them into the forth vocabulary. Notice that t simply
sets the current line then calls v . Let's 1look at v for a
moment.

When v is compiled, the forth vocabulary is both the context
and current vocabulary. If it were not also the context
vocabulary, the colon would make it the context vocabulary as
well. Since the definition of v contains a word which is in the.
editor vocabulary, it will not be found unless we do something
which will result in the editor vocabulary being searched as
well. Since the first word in its definition is editor , and
since editor is an immediate word, editor executes, and the
editor vocabulary becomes the context vocabulary. The current
vocabulary is not changed. So, while v is being compiled, the
editor vocabulary will be searched first, then the forth
(current) vocabulary will be searched. After v executes we will
probably want to do some editing, so when v executes it should
make the editor vocabulary the context vocabulary, so the
definition concludes with [compilel]l editor to cause this to
happen. Here again is the important difference between what
happens at compile time and what happens at run time.

copyright 1983 Prank Hogg Laboratory

86 A Tour De FORTH

Since vocabulary words are typically used inside a
definition to switch the context vocabulary, it is important that
vocabulary words be immediate words.

SEALED VOCABULARIES

Remember the restaurant application we developed in Chapter
4? Once this application is being used in the restaurant, we do
not want the employees to be able to execute anything other than
the words defined in the application. 1In particular, if someone
were to enter a word such as move the result could be disastrous.
The solution is to put the application words in a separate
vocabulary, then "seal" that vocabulary so that FORTH will only
find words in the application. A vocabulary is sealed by
"breaking" its chain.

We start by putting
vocabulary Menu immediate Menu definitions
on line 1 of block 57. When we load block 57 all the new words
will be placed into the Menu vocabulary. For convenience, we
should add another word to the Menu vocabulary,
¢ ReturnToForth (——) forth definitions ;

so that we can gracefully use FORTH again. We should also add

forth definitions
¢ RunMenu (——) Menu definitions ;

to conveniently start the application. All that remains is to
seal the Menu vocabulary.

e seal (——) O context @ 2+ c! ;

Now, executing Menu seal will do the job. Wwhen we are all done,
block 57 should contain the following.

vocabulary Menu immediate Menu definitions
58 load

59 load

¢ ReturnToForth (--) forth definitions ;
forth definitions

¢ RunMenu (--) Menu definitions ;

: seal (——) O context @ 2+ c! ;

Menu seal

ReturnToForth

Frank Hogg Laboratory copyright 1983

"" ~“\

A Tour De PFORTH

copyright 1983

87

Prank Hogg Laboratory

88 A Tour De FORTH

CHAPTER 11

HOW CAN I "PROTECT" MYSELF?

A major difficulty FORTH newcomers have is getting used to
FORTH's program control structures. A frequent mishap 1is to
write a definition with an if in it and forget to put the
necessary then after it. Sometimes different structures are
incorrectly combined. For example, .

L I) do ® e e if ® e e then ® oo loop
is just fine but
eee dO c¢ce if ... lOOp ... then

is definitely not "ok" with FORTH. The program structuring words
in the pre-compiled portion of eFORTH do not check for any of
these "mistakes". They assume that any words being compiled are
correct, so they do not waste any time performing this kind of
checking. 1Indeed, the eFORTH electives and extensions have been
thoroughly tested, so the only thing FORTH has to do is compile
them into the dictionary as rapidly as possible. We shculd not
have to extend our wait while redundant and unnecessary "error"
checking is going on.

COMPILER SECURITY

However, when you are developing an application, it would be
nice if FORTH did this kind of checking to prevent you from
wasting time trying to find what went wrong. Blocks 39 and 40
contain redefinitions of the program structuring words. These
new versions perform a simple syntax check and print error
messages if something isn't right. This 1is referred to as
"compiler security". A do must be correctly terminated by a loop
or +loop or else!

Block 41 contains redefinitions of the colon and semicolon.
The new definition of the colon makes sure you don't 1leave off
the semicolon of the previous word. The new definition of the
semicolon makes sure that the definition did not change the
stack. Presumably, changing the stack means that you used an if
without a then or committed some similar crime. Block 41 also
redefines the word which 1is executed by create so that if you

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 89

redefine a word you will be told about it. Unintentionally
redefining a word can lead to a great deal of head scratching.

DISK ERRORS

Block 3 contains a redefinition of (r/w) which is the disk
access word executed by r/w because r/w does not check for or
report disk errors, but it does save the status code returned by
the last disk access. The new version of (r/w) checks this
status and reports any error and aborts. This gives you the
flexibility to check for disk errors in your applications and
recode (r/w) to perform whatever operation you feel |is
appropriate when a disk error occurs. Again, FORTH does not take
control away from you. It gives you the power (and
responsibility) to decide what to do when exceptional conditions
occur.

EXECUTION VARIABLES

The ability to redefine the behavior of low-level FORTH
operations is based upon the very powerful but dangerous device
called an "execution variable". For example, r/w is a very
simple word.

: r/w system 'r/w @ execute ;

It simply gets an execution address out of the system variable
'r/w and executes it. So, to change the behavior of r/w all we
have to do is define a word and put its execution address into
‘r/w . This is what is done on Block 3. Notice that the new
version of (r/w) first executes the old version, then checks for
errors. Notice also that the word protect is executed once the
new version of (r/w) is installed in 'r/w . The reason for this
is quite simple. Once installed, we do not want the new version
to be removed from the dictionary with forget or empty because
the word executed by r/w would no longer exist. protect changes
the system so that everything in the dictionary when it executes
will stay there as long as FORTH is running.

copyright 1983 Prank Hogg Laboratory

90 A Tour De FORTH

CHAPTER 12

THE eFORTH 6809 ASSEMBLER VOCABULARY

The assembler vocabulary is used when you need operations
that have not yet been implemented in FORTH (such as processing
interrupts and other hardware capabilities) or when a process
needs to be as fast possible. And it is the ability to code some
words in machine language that makes FORTH an ideal programming
tool in environments where one must have complete control of a
computer's hardware and peripherals. This section assumes you
are familiar with 6809 assembly language.

The assembler vocabulary is invoked automatically when the
words code and ;code are used.

code DEFINITIONS

code is used to create a word whose behavior will be
specified with assembly language mnemonics instead of high-level
FORTH code. For example, here is the definition of + for the
6809 using the eFORTH assembler.

code + (nl n2 =— n3))
d pulu 0 ,u addd 0 ,u std
next end-code

The 6809 U register is used for the FORTH machine's SP register.
So when + is executed, d pulu pulls the 16-bit number on top of
the stack and puts it into the D accumulator. Next, the number
now on top of the stack is added to the D accumulator by
0 ,u addd and replaced with the result by 0 ,u std. Finally,
next is a macro which compiles the 6809 code for NEXT.

You should recall that NEXT is the routine which is executed
between each FORTH word, and every word in FORTH must ultimately
jump to NEXT.

The word end-code 1is used to signal the end of a code or
;code definition. It restores the context vocabulary to what it
was before the assembler vocabulary was called.

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 91

As you may have noticed, even assembly code is written in
reverse order in FORTH. Basically, the rule is that all operands
must be specified before writing the mnemonic.

Here 1is what happens when the interpreter sees a code
definition. When code is executed it creates the name field, the
link field, and sets the code field to point to the parameter
field. The mnemonics which follow the name put the appropriate
machine codes in the parameter field.

It is important to point out that, unlike the colon, code
does not put FORTH into the compiling state. All the words which
follow it are executed. This means that each mnemonic must be
defined so that when it executes it compiles the proper machine
code for that mnemonic into the dictionary. No words in the
assembler vocabulary are immediate. Consequently, it is an easy
matter to write macros. For example, by defining next as

: next JY+H 1ldx 0 ,x 1 jmp ;

it becomes a macro-instruction to compile code for several
machine instructions. Obviously, such macros can be defined to
use parameters passed to them on the stack.

Let's 1look at the definitions of 28 and 2! . Double
precision variables must have four bytes reserved in their
parameter fields. We shall specify that the byte in the
parameter field with the 1lowest address holds the most
significant byte of the 32-bit variable. So, to push the four
bytes in the parameter field of a 32-bit variable we would code
it as follows:

code 2@ (adr — d4d)
x pulu 2 ,x 1dd d pshu 0 ,x 1dd 4 pshu
next end-code

Since the 6809 U register serves as the FORTH machine's SP
register, we pull the address on top of the FORTH stack into the
6809 X register, then load the D accumulator with the low 16 bits
of the 32-bit variable and push them to the stack. The next line
of code loads the D accumulator with the high 16 bits and pushes
them to the stack.

Similarily, 2! could be coded as

code 21! (d adr —)
x pulu d pulu X++ std d pulu 0 ,x std
next end-code

The address of the variable is pulled into the X register and the
high 16 bits are pulled into the D accumulator. These are stored

copyright 1983 Prank.nogg Laboratory

92 A Tour De FORTH

at the address and the X register is incremented twice to point
to the low 16 bits in the variable. The low 16 bits are pulled
from the stack and stored in the wariable. Finally, NEXT is
executed.

;code DEFINITIONS

As you might suspect, defining a word that defines other
words 1is a bit more complicated. Let us define 2constant which
when executed will add 32-bit constants to the dictionary. As
with constant , we shall suppose that the constant to be entered
into the dictionary is on the stack when 2constant is executed.

¢ 2constant (d -—)
constant , ;code
4 ,x 1dd d pshu 2 ,x 1dd d pshu
next end-code

When 2constant is executed, it executes constant which creates a
dictionary entry and sets the code field to point to the routine
whiclh pushes 16-bit constants to the stack and puts the 16-bit
number on top of the stack into the parameter field. The comma
puts the next 16-bit stack item into the dictionary which means
that the parameter field being created now contains the 32-bit
constant. But the code field, you recall, points to the routine
which pushes 16-bit constants to the stack. This is remedied by
scode which overwrites the code field so that it points to the
code which follows ;code .

So, when you enter
10000. 2constant sample

sample will be added to the dictionary. 1Its parameter field will
contain the 32-bit representation of 10,000, and its code field
will point to the machine code which follows j;code in the
definition of 2constant .

This code gets the contents of W which points to the code
field of the double precision constant being executed. In
eFORTH's 6809 implementation of the FORTH machine, the W register
is implemented with the X register, so on entry to the machine
code we may assume that X is pointing to the code field address
of the double constant being executed.

Actually, we <could have defined 2constant a bit more

economically. This definition illustrates an important feature of
the assembler.

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 93

¢ 2constant (d —)
constant , scode
2 ,x leax ! 2@ 2+ 2+ jmp end-code

Among other things, ;code stops compilation which means all the
words which follow it are executed rather than compiled into the
dictionary. This allows the programmer to use high-level FORTH
to calculate operands which is what is done in the above
definition. First, the leax instruction is compiled. Next, the
phrase ' 2@ pushes the code field address of 2@ to the stack.
Then we add two to it to get the parameter field address. Now,
if we look at the code for 2@ , the instructions beginning with 2
+Xx 1dd on the second 1line are exactly what we want a double
precision constant to do. This instruction is 1located in the
second byte of the parameter field of 2@ so, we add two to the
parameter field address of 2@ (which is on the stack) and use
this as the operand for a jump instruction.

BRANCH INSTRUCTIONS AND PROGRAM STRUCTURE

Mnemonics for conditional branch instructions are not
included. Instead, the following control structures are provided
in the eFORTH assembler. They automatically compile the
appropriate branch instructions to implement the structure.

<condition> if...then

<condition> if...else...then
begin...<condition> until
begin...<condition> while...repeat
begin...again

These words may 1look identical to the same control words
available in high-level FORTH but they are quite different.
This is a clear example of how the same words can be defined
differently in different vocabularies.

if , while and until must be preceded by a condition code.
The available condition codes are

eq mi hi 1s cc cs vc vs pl
mi ge 1t gt 1le 1lo hs

and the condition specified by any of them may be inverted with
not .

The phrase eq if will cause the "true" part of a conditional
to be executed if the z-bit of the condition code register is
set; otherwise control will branch to the code which follows the
subsequent else or then . Similarly, mi until will cause the

copyright 1983 Frank Hogg Laboratory

94 A Tour De FORTH

loop to be terminated if the n-bit of the condition code register
is set according to the rule for a BMI instruction branch.
Otherwise control branches to the previous begin .

The sequence eq not while will cause the code following
while to be executed if the z-bit of the condition code register
is clear; otherwise execution continues with the code following
the subsequent repeat .

The other condition codes are the 6809 conditional branch
mnemonics without the 'B'. So, the phrase hi if will cause the
"true™ part to be executed if the condition code register
satisfies the conditions which would cause a BHI instruction to
branch.

The words if , while and else all compile a (short) relative
branch instruction into the dictionary, so it is possible to get
a "relative branch too long" error message if, for example, you
put an enormous amount of code between an if and its
corresponding else or then , or a begin and its corresponding
until or a while and its corresponding repeat . This condition
is not detected until the forward branches of these words are
resolved. (See their definitions on block 8.)

For straight-forward examples see the definition of roll on
block 11 and the definition of du< on block 26. For a very
non-straight-forward example, see the definition of -match on
block 19. The stack 1is manipulated with swap and rot to move
around the addresses marking forward references which need to be
resolved. The result 1is very unstructured but byte efficient
code.

eFORTH ASSEMBLER SYNTAX

The mnemonics provided in the eFORTH assembler vocabulary
are listed here according to the number and type of operands they
require. The eFORTH syntax follows Motorola's "green card"
except, as noted earlier, operands are given before the mnemonic.
The syntactic symbol <number> is used to represent any sequence
of FORTH words which 1leave a 16-bit number on the stack. The
symbol <mmm> is used to represent an arbitrary mnemonic.

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 95

IMMEDIATE ADDRESSING

The immediate addressing mode is specified by preceding the
mnemonic with the usual "#" sign.

<number> # <mmm)>

The following code would be used, for example, to compare the
contents of the A accumulator to the ASCII carriage return code:

13 # cmpa

EXTENDED ADDRESSING

The extended addressing mode is specified for the 6809 by
simply preceding the mnemonic with the address. Extended
addressing is the default addressing mode unless immediate,
direct, or indexed addressing is explicitly specified.

<number> <>

DIRECT ADDRESSING

In the direct addressing mode the byte following the
mnemonic is combined with the 6809 direct page register to form
an effective address. Direct addressing must be explicitly
specified for the 6809 with the symbol "<" placed preceding the
mnemonic. The eFORTH 6809 implementation uses the direct page
register as a pointer to the user variable area. Consequently,
direct addressing will access the user variables of the current
user.

buffer < 1ldxz

INDEXED ADDRESSING

The constant-offset indexed addressing mode is specified by
preceding the mnemonic with the name of an indexable register
preceded with a comma. This, in turn, must be preceded with a
number which specifies the constant offset. Note that a constant
offset of zero must be explicitly given. Hence a constant offset
from the U register is specified with

copyright 1983 Frank Hogg Laboratory

96 A Tour De FORTH

2 ,u 1dd

In addition, the program counter can be used with a constant
offset. For example,

table ,pcr leax

The accumulator offset indexed addressing mode is specified
by using one of the following:

ar,x b,x d,x ary b,y d,y
aru b,u d,u a,s b,s d,s

For example,
b,y 1lda
is equivalent to the standard 6809 assembly code

LDA B,Y

The auto increment or auto decrement addressing mode is
specified by preceding the mnemonic with one of the following
words:

fX+ Y+ Jut .S+ ,x++ ,y++ ,ut+ ,S++
=X =Y e=—u ¢—S =X 2 '4 e——u =S

The indirect addressing mode is specified by preceding the
mnemonic with a square bracket. For example,

<number> 1 1dx

and notice that the bracket must be separated on both sides with
spaces. If the words inside the bracket just push a number to
the stack, as in the previous example, the addressing mode will
be extended indirect. The bracket may also follow words which
specify other addressing modes to give the indirect version of
that mode. Constant offset indexed indirect addressing is
specified with

0 u) 1dd
Accumulator offset indexed indirect addressing is specified with
b,y 1 1da

Auto double increment indexed indirect addressing is specified

Frank Hogg Laboratory copyright 1983

L ’
~

A Tour De FORTH 97

with
X+] 1dd

Program counter constant offset indirect addressing is specified
with

table ,pcr] leax

RELATIVE ADDRESSING

.Relative addressing is only used by two eFORTH assembler
mnemonics:

<number> bra
<number> bsr

and <number> is taken to be the absolute address to branch to.
The assembler will generate an 8-bit or 1l6-bit operand as
required.

6809 MNEMONRICS

The bulk of the 6809 opcodes can be divided into three
classes: (1) those which are used without any operands, (2) those
which must be used with either direct, extended, or indexed
addressing modes but which cannot be used with the immediate
addressing mode, and (3) those which may be used with the
immediate addressing mode or with one of the other three major
addressing modes.

MNEMONICS - NO OPERANDS

The following mnemonics are used alone. Thef neither
require nor use any operands placed on the stack.

nop sync daa sex abx mul
rts rti swi swi2 swi3

nega coma lsra rora asra asla rola deca inca tsta clra
negb comb 1srb rorb asrb aslb rolb decb incb tstb clrb

copyright 1983 Frank Hogg Laboratory

98 A Tour De FORTH

MNEMONICS - IMMEDIATE ADDRESSING ILLEGAL

The mnemonics listed here require an operand which specifies
either direct, extended, or indexed addressing mode. The
immediate addressing mode is illegal, but no error message will
be given.

neg com 1sr ror asr asl
rol dec inc tst clr
sta stb std stx sty stu sts

jsr jmp

MNEMONICS - IMMEDIATE ADDRESSING PERMITTED

The mnemonics listed here must be preceded with words which
specify immediate, direct, extended, or indexed addresssing
modes.

suba subb subd

adda addb addd

cmpa cmpb cmpd cmpx cmpy cmpu cmps
1da 1db 14d 1ldx ldy 1du 1ds
sbca anda bita eora adca ora

sbcb andb bitb eorb adcb orb

MNEMONICS - IMMEDIATE OPERANDS REQUIRED

These mnemonics assume immediate addressing and use the
number on the stack for the immediate operand

andcc orcc cwai

MNEMONICS - INDEXED ADDRESSING REQUIRED

The following mnemonics must be preceded with words which
specify one of the indexed addressing modes. This includes the
program counter constant offset mode and the indirect indexed
modes.

leax leay leau leas

Frank Hogg Laboratory copyright 1983

ey

A Tour De FORTH 99

MNEMONICS - REGISTER OPERANDS REQUIRED

The mnemonics 1listed here may only have one or more
registers specified as operands.

puls pulu pshs pshu tfr exg
For example,

a bdpr xy pulu
is the code to pull the A and B accumulators, the direct page
register, and the X and Y registers from the stack pointed to by
the U register. And

a dpr tfr

will transfer the contents of the A accumulator to the direct
page register. The legal register names are

a b d x y u s per dpr ccr

MACROS

Words can be defined in terms of the available mnemonics to
produce macros or define new mnemonics. For example, an ASLD
mnemonic could be added to the 6809 repoitoire with

¢ asld aslb rola ;

Notice that this is a colon definition so the asl and rol
mnemonics have their execution addresses compiled into the
parameter field of asld . They are not executed until asld is
executed at which ‘time they compile machine code into the
dictionary.

copyright 1983 Frank Hogg Laboratory

100 A Tour De FORTH

CHAPTER 13

WHERE DOES eFORTH PUT THINGS?

eFORTH uses memory in accordance with this memory map.

End of Available Memory

Ll
T

User Variable Area

| |

=8 + limit
I I

| Disk Buffers |

l |

+ + first
| Return Stack |

| |

| Terminal Input Buffer |

| Parameter Stack |

| |

| |

| |

| |

| | pad

| Free Dictionary Space |

+ + here
| |

| Pre-compiled FORTH |

| |

| System Variables |

+ + origin

Beginning of Available Memory

THE DICTIONARY

The dictionary starts in low memory and grows upward as
words are defined. The word here returns the address of the
first free byte in the dictionary. Words can be removed from the
dictionary with forget or empty , and memory released by this
process is reclaimed.

Frank Hogg Laboratory copyright 1983

o~

A Tour De FORTH 101

THE PARAMETER STACK

The starting address of this stack is contained 1in the
variable s0 , and 's returns the address of the last number
pushed to the stack. The stack grows downward toward the
dictionary. It 1is possible for the stack and the dictionary to
collide. eFORTH does not check for this condition.

THE TERMINAL INPUT BUFFER

This buffer is reserved to hold a line of text entered from
the keyboard. Characters are stored here beginning at the
address contained in the variable s0 moving upward toward the
return stack.

THE RETURN STACK

This stack 1is wused to hold return addresses and various
sorts of temporary data. Its origin is contained in the variable
r0 , and the word 'r returns the address of the last number
pushed to this stack. This stack grows downward toward the
terminal input buffer. They share 256 bytes which is more than
adequate.

THE DISK BUFFERS
eFORTH reserves 1028 bytes for each disk buffer (1024 are

used to hold the data on a block) and reserves space for four
buffers when it starts running.

THE USER VARIABLE AREA
The address at which this area begins is returned by ‘u .

This area contains user variables and allows eFORTH to be
expanded for multi-programming.

copyright 1983 Frank Hogg Laboratory

102 A Tour De FORTH

CHAPTER 14

THE END OF THE TOUR

This concludes our tour of FORTH and some of the intimate
details of eFORTH. I have found FORTH to be an ideal programming
environment. It doesn't force things on me, and it allows me to
interactively explore my hardware and develop high-level
applications. Despite the fact that I know dozens of programming
languages and teach in a computer science department where Pascal
is the major instructional 1language (soon to be replaced by
Modula-2), whenever I have a choice, I choose FORTH. I have
written a multi-tasking system that allows me to start any number
of programs running, all of which can communicate with one
another, turtle graphics, music synthesis, and a variety of file
and data-base structures. I hope that FORTH helps you to be as
productive as much as it has helped me.

LITERAL STRINGS

A few odds and ends haven't been discussed that I would like
to mention before leaving you. eFORTH gives you the ability to
use literal strings. The word " ("quote"), which is defined on
block 31, is used in a number of places. If you study them, you
should have no trouble using it. It is used in the definition of
date on block 66 and in header on block 31. Notice that
" hello"™ 1is equivalent to " hello" type (except that quote is a
"smart" word but dot-quote isn't). Quote 1is immediate, and
whenever it executes, it puts the address and count of the string
which follows it (to the terminating quote) onto the stack.
However, if FORTH is in the compilation state, it will compile a
run-time word, then the string into the parameter field of the
word being defined. Later,. when the word being defined executes,
the run-time word compiled by quote will push the address and
count of the string to the stack.

It is used in header to just print out the string, but in
date a substring is extracted from the string.

Frank Hogg Laboratory copyright 1983

A Tour De FORTH 103

SMART WORDS

The quote 1is a smart word; it behaves one way inside a
definition (it compiles), and another way outside of a definition
(it moves the string to pad). In general, smart words are being
discouraged these days, but quote strikes me as being a rather
benign one. The word ascii , defined on block 13, is also a
smart word.

A CASE STRUCTURE

When Chapter 11 called your attention to block 38 you may
have wondered how to use those words. (Notice that block 40
contains "secure" versions. Versions without compiler security
are defined on block 38.) Here are two samples.

e is (n —)

case
1 <of ." Less than one." else
1l of " One." else
2 5 range ." Two-Five." else
5 >of " Greater than five." else
endcase F

Test this word by entering things like 4 is and hitting return.

: equals (adr cnt —-)
case
®" one" "of 1 . else
" two" "of 2 . else
" ten" "of 10 . else
." What?"

endcase s
This last one is tested by entering things like
" one" equals

three" equals
" ten" equals

but be ready for a surprise when you try " tenth®" equals . Oh,
well, nobody's perfect.

copyright 1983 Frank Hogg Laboratory

—_-1

Foowtwc p 4

- T &%

ile v
il L [
-
-
-
| &
N =4 -
R L] -
B 147
e L]
-
] ol N
| —
* - N R
L 48 [l
" b
LS
r n i ¥
i
-
¥ r r -
e r

+l‘

AL

.

APPENDIX A

HOW DOES eFORTH DIFFER FROM "Starting FORTH"?

eFORTH was designed to follow contemporary FORTH standards.
The original intention was to follow the FORTH-83 STANDARD,
however, at this writing, the standard hasn't been published.
Accordingly, eFORTH follows the FORTH described in Brode's
Starting FORTH except in those cases where we are fairly sure
what will be in FORTH-83.

LOOPS

Perhaps the most significant difference is in the behavior
of the do...loop structure. The behavior of the eFORTH
implementation is described in Chapter 6. Other differences
which should be mentioned are these.

First, the word i does not simply return the number on top
of the return stack. It must perform a calculation on it. There
are situations where Brode does not use it inside a loop (pp.
111-112). This will not work in eFORTH. The words i and j must
only be wused inside a loop, and only to return the current loop
index. To move a copy of the number on the return stack to the
parameter stack, you must use r@ in eFORTH. There is no word in
eFORTH which is equivalent to I' in Brode.

The word DOUBLING defined on page 134 is not restricted to
an upper limit of 32,767 in eFORTH. Try 65,525, or ¢try zero.
The word TEST defined on page 135 will behave quite differently
in ‘-eFORTH. The eFORTH loop implementation eliminates the need
for /LOOP described by Brode on page 162.

. execute

In Starting FORTH , the word execute expects a word's
parameter field address on the stack. 1In eFORTH, execute expects
a word's code field address (execution address). This is also
true of ' ("tick") which returns a code field address in eFORTH,
but a parameter field address in Starting FPORTH . However, all
of the examples which use them in Starting PORTH will also work
in eFORTH.

copyright 1983 Frank Hogg Laboratory

Starting FORTH DIFFERENCES APPENDIX A-2

cmove AND <cmove

These words generally behave in the manner described on page
267 except that, when possible, they will move two bytes at a
time.

?stack

This word does not return a flag. In eFORTH it will abort
if there has been stack underflow. This follows the consistent
naming convention that words whose names begin with a question
mark contain some sort of conditional execution which may result
in an abort. If a word simply returns a flag, the question mark
should be at the end of its name.

NUMBER FORMATTING

Use the "set-up" phrases in the box on the top of page 172.

Frank Hogg Laboratory copyright 1983

~

APPENDIX B

eFORTH MASTER GLOSSARY

This glossary contains an entry for each word supplied with
eFORTH except for those which are implementation specific. Words
which are supplied only for a particular implementation are
described in the appendix which describes that implementation.

These entries are listed according to their ASCII order.
The first 1line gives the name of the word being described, the
vocabulary in which it is found, the block number from which it
was loaded (a zero means that it was not loadeé¢ from a block),
and 1its stack effect. The remaining 1lines g¢ive a brief
description of what the word does.

In the stack effect, the two dashes incdicate the point at
which the word executes. The parameters which must be placed on
the stack before the word is executed are on the left; the values
the word returns are on the right. 1In both cases, the item on
top of the stack is on the right.

The symbols used to indicate stack items include:

b 8-bit byte (the high 8-bits are zero)

(e 7-bit ASCII character (the high 9-bits are zero)
n 15-bit sigyned integer

u 16-bit unsigned integer

d 31-bit signed integer

ud 32-bit unsigned integer

flg boolean flag (zero is false, non-zero is true)
tf trve boolean flag (non-zero)
ff false boolean flag (zero)

adr 16-bit memory address

The sequence "adr cnt" is frequently used and referred to as
specifying a string. Specifically, "adr" represents the address
of the first character in the string, and "cnt" represents the
number of characters in the string.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY : APPENDIX B-3

WORD

44

$>

£

i

s

VOCABULARY BLOCK STACK EFFECT

forth 0 (nadr --)
Store n at adr.

forth 13 (-—-)
Compile a literal string with a run-time word which
will push its address and count to the stack. If
not compiling, move the word to pad and push its
address and count to the stack.

forth 38 (== adr)
Begins a phrase to be executed if the case select
string is equal to the string identified on the stack;
otherwise execution branches to the words which follow
the next "else". See ("of) .

assembler 0 (-—-)
Specify the immediate addressing mode.

forth 0 (udl -- ud2)
Generate from an unsigned double number, udl, the
next ASCII character which is placed in the output
string. Result ud2 is the quotient after division
by base and is held for further processing.

forth 10 (b -
Print b as two hex digits.

forth 10 (u-)
Print u as four hex digits.

forth 0 (d -- adr cnt)
Terminate pictured numeric output conversion. Leave
the address and count of the string. May be followed

by type.

editor 20 (== adr)
Return the address of the editor's find buffer.

editor 20 (—— adr)
Return the address of the editor's insert buffer.

forth 0 (ud -=- 0 0)
Convert all digits of an unsigned 32-bit number adding
each to the output string until the remainder is
0. At least one digit is generated. Use between
<# and #>.

forth 0 (=— cfa)
Search the dictionary for the next word in the input
stream. Leave its execution address if found. Abort
if it isn't found.

copyright 1983 Frank Hogg Laboratory

Fay
B

eFORTH MASTER GLOSSARY

WORD
'bell

'bs

‘claim

'config

‘cr

‘create

'depth

Ydevice

'emit

'eol

'eos

copyright 1983

APPENDIX B-4

VOCABULARY BLOCK STACK EFFECT

system 7 (—— adr)
A system variable which contains the execution address
of the word executed by bell. Its initial value is

(bell).

system 7 (—— adr)
A system variable which contains the execution address
of the word executed by bs. Its initial value is
(bs) .

disking 50 (— adr)
Return the address of a word executed by Claim which
performs system dependent functions.

disking 50 (—— adr)
Return the address of the word executed by Configure.

system 14 (—— adr)
Return the address which holds the execution address
of the word executed by c¢r for the current output
device.

system 7 (—— adr)
A system variable which contains the execution address
of the word executed by create. Its initial wvalue
is (create).

system 14 (—— adr)
Return the address which holds the maximum number
of lines on the:-current output device.

system 14 (b -
Create a name for the field which is offset b bytes
from the beginning of the parameter field of a device
word. Standard device words are term and printer.

system 7 (—— adr)
Returns the address of the system variable which
holds the execution address of the word executed
by emit. Its initial value is (emit).

system 14 (—— adr)
Return the address which holds the execution address
of the word executed by eol for the current output
device.

system 14 (—— adr)
Return the address which holds the execution address
of the word executed by eos for the current output
device.

Frank Hogg Laboratory

eFORTH MASTER GLOSSARY

WORD

'expect

'get

'home

'key

'key?

'number

'page

'put

'r

‘r/w

copyright 1983

APPENDIX B-5

VOCABULARY BLOCK STACK EFFECT
system 7 (— adr)
A system variable which contains the execution address
of the word executed by expect. Its initial wvalue
is (expect).

system 14 (—— adr)

A user variable which holds the address of the parameters

for the current input device.

system 14 (—— adr)
Return the address which holds the execution address
of the word executed by home for the current output
device.

system 7 (—— adr)
Return the address of the system variable which holds
the execution address of the word executed by key.
Its initial value is (key).

system 7 (—~ adr)
A system variable which contains the execution address
of the word executed by key?. Its initial value is
(key?) .

system 7 (=~ adr)
Return the address of the system variable which holds
the execution address of the word wiich does input
number conversion. Its initial value is (number),
but is usually set to number.

system 14 (=~ adr)
Return the address which holds the execution address
of the word executed by page for the current output
device.

system 14 (—— adr)

A user variable which holds the address of the parameters

for the current output device.

forth 0 (— adr)
Return the contents of the return stack pointer.

system 7 (-- adr)
Return the address of the system variable which holds
the execution address of the word executed by r/w.
Its initial value is (r/w).

forth 0 (-- adr)
Return the contents of the parameter stack pointer.

Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-6
WORD VOCABULARY BLOCK STACK EFFECT

'start system 7 (—— adr)
Return the address of the system variable which holds
the first FORTH word to be executed on a cold start.
Its initial value is quit.

"type system 7 (—— adr)
Return the address of the system variable which holds
the execution address of the word executed by type.
Its initial value is (type).

‘u forth 0 (—— adr)
Return the base address of the active user variable
area.

'update editor 18 (-- adr)

An execution variable which holds the execution address
of the word to be executed whenever changes are made
to the current editing block.

'width system 14 (-- adr)
Return the address of the line width value for the
current output device.

'xy system 14 (—— adr)
Return the address which holds the execution address
of the word executed by xy for the current output
device.

(forth 0 (--)
Forces the interpreter to skip any text between this
word and the next ')'.

) system 13 (—— adr cnt)
Run-time word compiled by " which returns the address
and count of the literal string which was between
the quotes.

("of) system 37 (alcl a2 c2 --al cl1)
Run-time word compiled by "of . All four values
are dropped if the strings are identical; otherwise
al and cl are left and execution branches to the
next case.

(+1loop) system 0 (n--)
Similar to (loop) except that n is added to the index.
If this results in crossing the boundary between
the index and the index minus one, the loop is terminated.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY

WORD
.")

(;code)

(<of)

(>o0f)

(2do)

(?leave)

(abort)

(bell)

(bs)

(cr)

(create)

copyright 1983

APPENDIX B-7

VOCABULARY BLOCK STACK EFFECT
system 0 « —-)

Run-time word compiled by ." .

system 0 (-
The run-time word compiled by ;code .

system 37 (nl n2 -- nl)
Run-time word compiled by <of . Both nl and n2
are dropped if nl is less than n2; otherwise nl is
left and execution branches to the next case.

system 37 (nl n2 —— nl)
Run-time word compiled by >0f . Both nl and n2
are dropped if nl is greater than n2; otherwise nl
is left and execution branches to the next case.

0 (limit index --)
Run-time word compiled by ?do. index is the initial
index and limit is the loop limit. If limit is less
than or equal to index, the loop is not executed.

system

system 0 (flg ——)
A run-time word which forces immediate termination
of the currently executing loop if the flag is non-zero.

system 0 (fl1g --)
The run-time word compiled by abort" . It flg is
non-zero, the in-line text which follows is printed
and quit executed, otherwise execution branches to
the first word which follows the text.

system 0 (=)
Sound the "bell"™ on the current output device.

system 0 (--)
Transmit a destructive backspace to the current output
device.

system 33 (-

Issue a carriage return and line feed to the current

output device.

system 4 (-—-)
Used in the form create www to create a dictionary
entry for www. When www executes, it will return
the address of it's parameter field unless subsequently
modified by does> or ;code .

Frank Hogg Laboratory

-~
)

eFORTH MASTER GLOSSARY APPENDIX B-8

WORD
(do)

(emit)

(expect)

(forget)

(key)

(key?)

(leave)

(literal)

(loop)

(number)

VOCABULARY BLOCK STACK EFFECT
system 0 (1limit index --) °
Run-time word compiled by do. index is the initial
index and limit is the loop limit. If limit equals
index, the loop is executed 64K times (if terminated
by loop).

system 0 (c—-—)
Transmit the ASCII coded character on the stack to
the current output device.

system 0 (adr cnt --)
Accept a maximum of cnt characters from the current
input device storing them at adr. Input is terminated
when a carriage return is received.

system 0 (cfa —— flg)
Forget the word whose execution address is given
(and forget all words since it was defined). Leave
a zero if the operation was successful; leave a non-zero
if the operation was aborted.

system 0 (-—c)
Wait for a character to be received from the current
input device, then push its ASCII code to the stack.

system 0 (— £flg)
Return a true flag if a key has been pressed on the
terminal; otherwise return a false flag.

system 0 (==
A run-time word which forces immediate termination
of the currently executing loop. See leave.

system 0 (—n)
The run-time word compiled by literal . When executed,
the 16 bits which follow it are pushed to the stack.

system 0 (==
The run-time word compiled by loop . When executed,
the loop index on the return stack is incremented
and the loop is terminated if the index equals or
exceeds the loop limit; otherwise, execution branches
to the previous do .

system 0 (adr —— n)
Convert the string whose count byte is at the specified
address using the current base. A single precision
number is returned. Aborts if conversion is not possible.
The byte at adr is not used.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-9

WORD

(of)

(r/w)

(range)

(type)

*/

*/mod

+load

+loop

VOCABULARY BLOCK STACK EFFECT

system 37 (nl n2 —— nl)
Run-time word compiled by of . Both nl and n2 are
dropped if they are equal; otherwise nl is left on
the stack and execution branches to the next case.

system 0 (adr blk flg —- adr)
If the flag is non-zero, the specified block is read
from disk and stored in memory beginning at the specified
address; otherwise, 1024 bytes beginning at the specified
address are written to the specified block on the
disk.

system 37 (nl 1o hi =- nl)
Run-time word compiled by "range". All three numbers
are dropped if nl is "within" lo and hi; otherwise
nl is left and execution branches to the next case.

system 0 (adr cnt ——)
Transmit cnt characters beginning at adr to the current
output device.

forth 0 (nl n2 -- n3)
Signed multiply of nl by n2 leaving a 16-bit result.

forth 27 (nl1 n2 n3 —— n4)
Multiply nl by n2 leaving a 32-bit result which is
divided by n3.

forth 0 (ul u2 u3 —— u4 us)
Multiply ul by u2 leaving a 32-bit intermediate result,
then divide by u3 giving remainder u4 and quotient
u5. All values are unsigned.

forth 0 (nl n2 -~ n3))
Return the signed sum of nl with n2.

forth 0 (n adr --)
Add n to the 16-bit wvalue at adr.

forth 0 (n-—)
Begin interpretation of the block which is n blocks
away from the block on which +load appears. When
finished, interpretation continues with the words
following +load.

forth 40 (adrl adr2 --)
Use only in a definition. Marks the end of a definite
loop structure. See (+loop).

copyright 1983 Frank Hogg Laboratory

=

eFORTH MASTER GLOSSARY

WORD

2 4

e —u

r—X

=Y

+PCIE

VOCABULARY

forth

(n--)

APPENDIX B-10

STACK EFFECT

Allot two bytes of dictionary space and store the

number on top of the stack into them.

assembler

on the stack.

assembler

Specify the addressing
on the U register. The

on the stack.

assembler

Specify the addressing
on the X register. The

on the stack.

assembler

Specify the addressing
on the Y register. The

on the stack.

assembler

Specify the addressing
on the S register. The

on the stack.

assembler

Specify the addressing
on the U register. The

on the stack.

assembler

Specify the addressing
on the X register. The

on the stack.

assembler

Specify the addressing
on the Y register. The

on the stack.

assembler

(—— post)
Specify the addressing mode of two-byte

on the S register. The appropriate post

(—— post)
mode of two-byte
appropriate post

(—— post)
mode of two-byte
appropriate post

(—— post)
mode of two-byte
appropriate post

(-- post)
mode of one-byte
appropriate post

(-- post)
mode of one-byte
appropriate post

(—- post)
mode of one-byte
appropriate post

(-- post)
mode of one-byte
appropriate post

auto-decrement
byte is left

auto-decrement
byte is left

auto-decrement
byte is left

auto-decrement
byte is left

auto-decrement
byte is left

auto-decrement
byte is left

auto-decrement
byte is left

auto-decrement
byte is left

(adr —- 22?2)

Specify the program counter relative addressing mode.
adr is the absolute address of the operand. Stack
effect varies depending on the distance to adr.

copyright 1983

Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-11

WORD

¢S+

¢ S++

FA

U+

cut+

¢ X+

¢ X++

'Y

VOCABULARY BLOCK STACK EFFECT

assembler 0 (n --222)
Specify the addressing mode as a constant offset
from the S register. Stack effect varies depending
on the size of n.

assembler 0 (-- post)
Specify the addressing mode of one-byte auto-increment
on the S register. The appropriate post byte is left
on the stack.

assembler 0 (—— post)
Specify the addressing mode of two-byte auto-increment
on the S register. The appropriate post byte is left
on the stack.

assembler 0 (n -- 222)
Specify the addressing mode as a constant offset
from the U register. Stack effect varies depending
on the size of n.

assembler 0 (-- post)
Specify the addressing mode of one-byte auto-increment
on the U register. The appropriate post byte is left
on the stack.

assembler 0 (-~ post)
Specify the addressing mode of two-byte auto-increment
on the U register. The appropriate post byte is le.t
on the stack.

assembler 0 (n-— 222)
Specify the addressing mode as a constant offset
from the X register. Stack effect varies depending
on the size of n.

assembler 0 (-- post)
Specify the addressing mode of one-byte auto-increment
on the X register. The appropriate post byte is left
on the stack.

assembler 0 (-- post)
Specify the addressing mode of two-byte auto-increment
on the X register. The appropriate post byte is left
on the stack.

assembler 0 (n — 222)
Specify the addressing mode as a constant offset
from the Y register. Stack effect varies depending
on the size of n.

copyright 1983 FPrank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-12

WORD

Yyt

Y+t

-match

-search

-text

-trailing

copyright

VOCABULARY BLOCK STACK EFFECT

assembler 0 (— post)
Specify the addressing mode of one-byte auto-increment
on the Y register. The appropriate post byte is left
on the stack.

assembler 0 (—— post)
Specify the addressing mode of two-byte auto-increment
on the Y register. The appropriate post byte is left
on the stack.

forth 0 (nl n2 --n3)
Return the signed result of subtracting n2 from nl.

forth 0 (—— adr flg)
Search the dictionary for the next word in the input
stream. If found, return a false flag and the execution
address of the word; otherwise leave a non-zero flag
and here .

forth 0 (—)
Stop interpretation of the current block and continue
interpretation with the next sequential block. May
be used within a colon definition that crosses a
block boundary.

editor 19 (AUau--al flg)
Search for the string at a in the string at A. If
found, return a false flag and set al to point to
the character which follows the string. Otherwise
return a true flag and set al equal to A+U.

editor 21 (—— fl1g)
Starting at the current cursor position search for
the string in the find buffer. Limit the search to
the current editing block. Returns a false flag if
the string is found.

forth 12 (al ul a2 -- flg)
Compare two strings. Return a false flag if they
are equal; a positive number if the string at al
is "greater" than the string at a2; a negative number
if the string at al is "less" than the string at
az.

forth 0 (adr ul -- adr u2)

Adjust the character count ul to exclude trailing
blanks.

1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-13
WORD VOCABULARY BLOCK STACK EFFECT

. forth 0 (n-—-)
Print n followed by one space.

" forth 0 (--)
Use only in a definition. When the word being defined
is executed the text between the quotes will be printed.

o forth 0 (—-)
Immediately print the text which follows until the
first right parenthesis.

1 < forth 0 (nu-)
Print n right adjusted in a field u characters wide.

.S forth 10 (-—)
Print the current values on the computation stack.
This operation does not modify the stack in any way.

/ forth 0 (nl1 n2 -- quo)
Return the signed result of dividing nl by n2.

/mod forth 0 (ul u2 -- u3 u4)
Unsigned divide of ul by u2 leaving unsigned remainder
u3 and quotient u4.

0. forth 25 (--4)
Push a 32-bit zero to the stack.

0< forth 0 (n-- flg)
Leave a true flag if n is negative; otherwise leave
a false flag.

0= forth 0 (n-— flg)
Leave a true flag if n is equal to zero; otherwise
leave a false flag.

Obranch system 0 (f1g —-)
The run-time word compiled by if and other conditionals.
When executed, if the flag is zero, execution branches
to the address specified by the 16 bits which follow.

Osector# disking 49 (—— adr)
Return the address of a parameter which tells whether
the sectors on the disk in the current drive are
numbered from 0 or 1.

1+ forth 0 (n—-— n+l)
Increment n by one.

copyright 1983 Frank Hogg Laboratory

-
Fi

eFORTH MASTER GLOSSARY APPENDIX B-14
WORD VOCABULARY BLOCK STACK EFFECT

1- forth 0 (n-—-n-1)
Decrement n by one.

lpass editor 16 (from to cnt —- fr2 to2)
Used by copies to copy as many blocks as available
memory will hold.

2! forth 0 (d adr ==)
Store d at adr.

2* forth 0 (nl -- n2)
Multiply nl by 2. Arithmetic shift left.

2+ forth 0 (n -— n+2)
Increment n by two.

2- forth 0 (n--n-2)
Decrement n by two.

2/ forth 0 (nl — n2)
Divide nl by 2. Arithmetic shift right.

2>r forth 0 (nl n2 --)
Transfer nl and n2 to the return stack. n2 is the
most accessible after the transfer. Should be paired
with 2r> in the same definition.

20 forth 0 (adr =—- 4d)
Leave on the stack the 32-bit value at adr.

2constant forth 25 (d —--)
Define a 32-bit constant. When the defined constant
is executed, 4 is pushed to the stack.

2drop forth 0 (nl n2 ——)
Drop the top two numbers from the parameter stack.

2dup forth 0 (d--dd)
Copy the 32-bit number on top of the stack.

2over forth 11 (dl d2 --dl1 42 41)
_ Leave a copy of the second double number on the stack.

2r> forth 0 (=— n2 nl)
Transfer nl and n2 from the return stack to the parameter
stack. nl was the most accessible on the return stack
prior to this operation.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-15

WORD

2rot

2swap

2variable

L1}

;code

<#

<{cmove

<1lfa

<nfa

copyright

VOCABULARY BLOCK STACK EFFECT

forth 11 (dl d2 43 -- 42 43 41)
Rotate the third double number to the top of the
stack.

forth 11 (dl 42 -- 42 41)
Exchange the top two double numbers on the stack.

forth 25 (—)
Define a 32-bit variable which is initialized to
zero. When the defined variable executes, it pushes
its address to the stack.

forth 41 (—)
Used in the form : xx ... ; to create a new word
with the name xx . The words represented by ...
determine the behavior of xx when it is subsequently
executed.

forth 41 (—)
Terminate a colon definition and resume interpretation.

forth 9 (—)
Used in the definition of a defining word to specify
the run time behavior of the defined words as being
the machine code compiled by the assembler words
which follow.

assembler 0 (—)
Specify direct page addressing mode.

forth 0 (nl1 n2 —— flg)
Leave a true flag if nl is less than n2; otherwise
leave a false flag.

forth 0 (—)
Initialize pictured numeric output conversion.

forth 0 (adrl adr2 u --)
Move u bytes from adrl to adr2, the byte at adrl+u-1
is moved first.

forth 17 (cfa —— 1fa)
Convert a word's execution address to the address
of its link field.

forth 17 (cfa —— nfa)

Convert a word's execution address to the address
of its count byte.

1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-16

WORD

<of

>Drive

>binary

>f

>i

>in

>of

>r

VOCABULARY BLOCK STACK EFFECT

forth 38 (—— adr)
Begins a phrase to be executed if the case select
value is less than the number on the stack; otherwise
execution branches to the words following the associated
"else". See (<Kof).

forth 0 (nl n2 —- £fl1g)
Leave a true flag if nl is equal to n2; otherwise
leave a false flag.

forth 0 (nl n2 -- flg)
Leave a true flag if nl is greater than n2; otherwise
leave a false flag.

disking 50 (dr# —)
Set the current drive to be the specified drive.

forth 0 (d1 adrl -- 42 adr2)
Convert the text at adrl+l to a binary value using
the current base. The new value is added to dl1 and
left as d2. adr2 is the address of the first non-convertible
character. Set ctr equal to the number of converted
digits.

editor 20 (=)
Move the text which follows the editing command‘'being
executed to the find buffer. Do nothing if no text
follows.

editor 20 (-
Move the text which follows the editing command being
executed to the insert buffer. Do nothing if no text
follows.

forth 0 (== adr)
A user variable which holds the offset into the buffer
(terminal or disk) from which the interpreter will
fetch the next word.

forth 38 (— adr)
Begins a phrase to be executed if the case select
value is greater than the number on the stack; otherwise
execution branches to the words following the next
else . See (>of).

forth 0 (n--=)
Transfer n to the return stack. Should be followed
by r> in the same definition.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-17

2do

?dup

?2found

?leave

?2loop

?next

?pairs

?stack

VOCABULARY BLOCK STACK EFFECT
forth 0 (adr --)
Print the 16-bit value at adr.

forth 39 (—)
Aborts if FORTH is not in the compiling state.

forth 15 (cnt ==)
Issue a carriage return if there is not enough room
on the current line of the current output device
for the specified number of characters.

forth 40 (—— adrl adr2)
Use only in a definition. Marks the beginning of
a definite loop which must be terminated by loop
or +loop. See (?2do).

forth 0 (n--nln=-=-nn)
Duplicate the top of the stack if it is non-zero.

editor 21 (f1g ——)
If the flag is non-zero, print the text in the find
buffer and an error message and execute quit.

forth 40 (-—-)
An immediate word which compiles code to force immediate
termination of a loop at run-time if the top of the
stack is non-zero; otherwise execution continues.
Must be used in a definition and within a loop. See
(?leave) .

forth 40 (—)
Abort and issue an error message if a loop is not
being compiled.

system 37 (22?2 flg —-= 222)
Used by run-time case words to control execution
depending upon whether the case was matched. Stack
effect varies depending on whether there was a match
and whether the case select value is a number or
a string.

forth 39 (nl n2 --)
Used in "secure" versions of program structuring
words to check syntax. Abort if nl and n2 are not
equal.

forth 0 (=)
Abort if the parameter stack is in an underflow condition.
Can only be used in a definition.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-18
WORD VOCABULARY BLOCK STACK EFFECT

?status system 3 (—)
Aborts and issues an error message if the last disk
access resulted in an error.

e forth 0 (adr —- n)
Leave on the stack the 16-bit value at adr.

BackOp disking 52 (PromDr# ToDr# -—-)
Copy all blocks on the disk in the source drive to
the disk in the destination drive.

Bounds disking 50 (org limit --)
Return the block number of the first block on the
current drive and the number of the first block on
the next drive.

Claim disking 53 (cnt ==)
Claim the specified number of blocks on the disk
in the current drive for use by eForth. The disk
must be freshly formatted.

ClearDisk disking 52 (—)
Wipe all claimed blocks on the disk in the current
drive.

Configure disking 50 (-—-)

Set the track and sector parameters for the current
drive tu those for which the current disk in the
drive was formatted.

Drive disking 50 (-— adr)
Return the address of a pointer to the parameters
for the current drive.

Drive0 disking 50 (—— adr)
Return the address of the parameters for drive 0.
DriveField disking 49 (b —)
Create a name for a field in a drive's parameter
field.
Entries disking 51 (—— cnt)
Return the number of entries in the SectorCounts
table.
FormFeed system 33 (—)

Emits an ascii form-feed. 1Installed in the 'page
vector of the system printer.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-19
WORD VOCABULARY BLOCK STACK EFFECT

I'm forth 43 (--)
Used in the form: I'm cee to place the user's initials
into the variable me .

Mark editor 43 (-

Mark the current editing block with the time, the
user's initials and the date.

Mount disking 53 (dr# —-)
Mount the disk in the specified drive. The disk must
have been claimed previously.

ReadSector disking 52 (adr dadr -)
Read the sector at dadr on the disk in the current
drive storing it at adr. The high byte of dadr specifies
the track; the low byte the sector.

Release disking 53 (cnt ——)
Claim all blocks on the disk in the current drive
for use by eFORTH except for the specified number
which are reserved for the system's operating system.
The disk must be freshly formatted.

Remove disking 52 (dr# —-)
Remove the specified drive from the system. If drive
0 is specified, block 0 will access the first block
on the disk in drive 1.

Restore disking 52 (--)
Restore the head on the current drive

SectorCounts disking 51 (== adr)
Return the address of a table which contains the
sectors per side for each common count of sectors
per track.

SetDate forth 4 (-—-)
Set the current date to the string that follows.

SetSides disking 51 (sectors ——)
Set the s/s field for the current drive given the
specified number of sectors per track.

SetTime forth 5 (—)
Set the current time to the string that follows.

Size disking 50 (—— cnt)

Return the number of bytes required for the parameters
for each drive.

copyright 1983 Frank Hogg Laboratory

-

eFORTH MASTER GLOSSARY APPENDIX B-20

WORD VOCABULARY BLOCK STACK EFFECT
WriteSector disking 52 (adr dadr --)
Write the data at adr onto the sector specified by
dadr on the disk in the current drive. The high byte
of dadr specifies the track; the low byte the sector.
(forth 0 (-
Suspend compilation and begin interpretation.
('l forth 0 (-
Compile the execution address of the next word in
the definition as a literal. At run-time, that address
is pushed to the stack. May only be used in a definition.
[compilel forth 0 (--)
Compile the execution address of the immediate word
which follows instead of executing it. The immediate
word will execute when the defined word executes.
] assembler 0 (222 == 222)
Specify the indirect addressing mode. Stack effect
varies depending on the previously specified addressing
mode, if any.
] forth 0 (—)
Enter the compiling mode.
a assembler 0 (-
specify the A accumulator as an operand of the subsequent
psh, pul, tfr, or exg instruction.
a editor 23 (--)
Append the string which follows to the current line.
a,s assembler 0 (—— post)
Specify the addressing mode of A accumulator offset
from the S register. The appropriate post byte is
left on the stack.
aru assembler 0 (— post)
Specify the addressing mode of A accumulator offset
from the U register. The appropriate post byte is
left on the stack.
ar,x assembler 0 (— post)

Specify the addressing mode of A accumulator offset
from the X register. The appropriate post byte is
left on the stack.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-21

WORD

ary

abort"®

abs

again

again

allot

and

ascii

assembler

at

ato

VOCABULARY BLOCK STACK EFFECT

assembler 0 (—— post)
Specify the addressing mode of A accumulator offset
from the Y register. The appropriate post byte is
left on the stack.

forth 0 (-
An immediate word which compiles code so that at
run-time, if the top of the stack is non-zero, the
text which follows is printed and quit is executed.
See (abort) .

forth 0 (n--=u)
Return the absolute wvalue of n.

assembler 8 (adr —-)
Compile an unconditional branch to the machine code
at the specified address.

forth 39 (adr ——)
Use only in a definition. Compiles an unconditional
branch back to the code marked with the previous
"begin".

forth 0 (n--)
Reserve n bytes of space in the dictionary starting
at the current address returned by here.

forth 0 (ul u2 == u3)
Leave the bitwise logical and of ul with u2.

forth 13 (-—-c)
Return the ASCII code of the following character.
If compiling, remove it from the stack and compile
it as a literal.

forth 0 (-
Make the assembler vocabulary the context vocabulary.

editor 18 (—— adr rem)
Return the buffer address of the current cursor position
in the current editing block and the number of characters
remaining in the current 1line.

editor 18 (== adr c/1)
Set the cursor at the start of the current line and
return its buffer address and the length of the line.

assembler 0 (-
Specify the B accumulator as an operand of the subsequent
psh, pul, tfr, or exg instruction.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-22
WORD . VOCABULARY BLOCK STACK EFFECT

b editor 20 (-—-) _
Make the previous block the current editing block.

b,s assembler 0 (— post)
Specify the addressing mode of B accumulator offset
from the S register. The appropriate post byte is
left on the stack.

b,u assembler 0 (—- post)
Specify the addressing mode of B accumulator offset
from the U register. The appropriate post byte is
left on the stack.

b,x assembler 0 (-- post)
Specify the addressing mode of B accumulator offset
from the X register. The appropriate post byte is
left on the stack.

b,y assembler 0 (-- post)
Specify the addressing mode of B accumulator offset
from the Y register. The appropriate post byte is
left on the stack.

b/blk forth 7 (--u)
A system constant which returns the number of bytes
in a block. This implementation returns a value of

1024.

back system 36 (adr ——)
Compiles a branch vector back to the address on the
stack.

base forth 0 (-—— adr)

Return the address of the user variable which holds
the base which is being used for input and output
conversion of numbers.

begin assembler 39 (== adr)
Push the current value returned by here to the stack.
Used to mark the destination of a subsequent branch
instruction.

begin forth 39 (-—— adr)
Use only in a definition. Used to mark the beginning
of either a "begin..while..repeat" or "begin..again"
or "begin..until" loop.

bell forth 0 (-—)

Executes the word whose execution address is in the
variable 'bell. 1Its initial value is (bell).

copyright 1983 _ Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-23
WORD VOCABULARY BLOCK STACK EFFECT

bl forth 0 (—— bl)
A constant which returns the code for an ASCII blank.

blank forth 0 (adr u --)
Fill memory beginning at adr with a sequence of u
blanks. If u is zero, no action is taken.

blk forth 0 (== adr)
A user variable which holds the number of the block
being interpreted. If this number is zero, input
is being taken from the terminal input buffer.

blk? system 0 (u-—adr ff l u -=—u u)
Search the buffers for block u. If found return its
address and a zero; otherwise leave u and return
a non-zero value.

block forth 0 (blk ==)
Leave the address of the first data byte in the disk
buffer which contains block blk. The block is read
from disk if necessary.

blocks disking 49 (—— adr)
Retur the address of the parameter which tells how
many blocks are on the disk in the current drive.

body forth 17 (cfa -- pfa)
Convert a word's execution address to its parameter
field address.

bra assembler 8 (adr ——)
Compile the machine code for a branch to the address
on the stack. Compiles a long branch instruction
if necessary.

branch system 0 (--)
The run-time word compiled by repeat and other conditionals.
When executed, causes execution to branch to the
address specified by the 16 bits which follow.

bs forth 0 (—)
Executes the word whose execution address is in the
variable 'bs. Its initial value is (bs).

bsr assembler 8 (adr --)
Compile the machine code for a branch to subroutine
at the address on the stack. Compiles a long branch
to subroutine if necessary.

copyright 1983 Frank Hogg Laboratory

B

eFORTH MASTER GLOSSARY APPENDIX B-24

WORD

buf?

buffer

c!

c#

Cy

c/1

c@

case

cC

CCr

center

cfa>

clear

VOCABULARY BLOCK STACK EFFECT

system 0 (u - adr flg)
Assign a buffer to block u. Return its address and
a zero flag if the buffer is not marked as updated;
otherwise the flag is the number of the updated buffer.

forth 0 (blk --)
Obtain the next block buffer assigning it to block
blk. The block is not read from disk.

forth 0 (nadr --)
Store the least significant 8-bits of n at adr.

forth 0 (-— adr)
Return the address within the current output device
record which contains the number of characters which
have been printed on the current line.

forth 0 (b --))
Allot one byte of dictionary space and store the
low byte of the number on the stack into it.

forth 7 (-—u)
A system constant which returns the number of characters
on one line of an editing block. This implementation
returns a value of 64.

forth 0 (adr =- b)
Leave on the stack the 8-bit value at adr.

forth 38 (=— nl n2)
Use only in a definition. Begins a keyed case structure.

assembler 9 (== cond)
Specify the "carry-clear" condition code.

assembler 0 (-
Specify the condition code register as an operand
of the subsequent psh, pul, tfr, or exg instruction.

forth 31 (adr cnt --)
Print the specified string at the center of the current
print line.

forth 17 (nfa ——- cfa)
Convert the address of a word's count byte to its
execution address.

editor 16 (blk --)
Fill the specified block with blanks.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-25
WORD VOCABULARY BLOCK STACK EFFECT

clears editor 16 (blk cnt ==)
Fill the specified range of blocks with blanks.

cmove forth 0 (adrl adr2 u --)
Move u bytes from adrl to adr2. The byte adr adrl
is moved first.

cnt forth 0 (== adr)
A user variable used as a character limit for i/o
operations.

code . forth 9 (-=-)

Used to create a word whose behavior is specified
with the machine code compiled by the assembler words
which follow.

compile forth 0 (=)
Compile the execution address of the next word into
the dictionary.

constant forth 0 (n--)
Used in the form n constant cc to create a named
constant value. cc is added to the dictionary, and
when it is executed n is pushed to the stack.

context forth 0 (-- adr)
A user variable which specifies the context vocabulary.

copies editor 16 (from to cnt --)
Copy the specified number of blocks beginning at
"from" moving them to "to".

copy editor 16 (old new --)
Copy the contents of the old block to the new block.

count forth 0 (adr -- adr+l cnt)
Given the address of a string's character count,
return the address of the first character and the
length of the string.

cr forth 0 (-
Executes the word whose execution address is in the
current output device variable 'cr. See (cr).

create forth 0 (-
Execute the word whose execution address is in the

system variable 'create. Its initial value is (create).

copyright 1983 Frank Hogg Laboratory

4

eFORTH MASTER GLOSSARY APPENDIX B-26

WORD

CS

csp

ctr

current

d,x

d'y

VOCABULARY BLOCK STACK EFFECT

assembler 9 (== cond)
Specify the "carry-set" condition code.

forth 39 (—— adr)
A user variable which holds the current stack position.
Set by the colon and checked by the semicolon ("secure"
versions only) to make sure that compiling did not
change the stack.

forth 0 (—— adr)
A user variable used as a counter for i/o operations.

forth 0 (—— adr)
A user variable which specifies the current vocabulary.

assembler 0 (—)
Specify the D register as an operand of the subsequert
psh, pul, tfr, or exg instruction.

editor 23 (-
Delete the string which follows.

forth 25 (dl d2 -- d3)
Return the 32-bit sum of dl with d2.

assembler 0 (—— post)
Specify the addressing mode of D accumulator offset
from the S register. The appropriate post byte is
left on the stack.

assembler 0 (—— post)
Specify the addressing mode of D accumulator offset
from the U register. The appropriate post byte is
left on the stack.

assembler 0 (—— post)
Specify the addressing mode of D accumulator offset
from the X register. The appropriate post byte is
left on the stack.

assembler 0 (—- post)
Specify the addressing mode of D accumulator offset
from the Y register. The appropriate post byte is
left on the stack.

forth 26 (dl 42 -- 43)
Leave the difference of two signed, 32-bit numbers.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-27
WORD VOCABULARY BLOCK STACK EFFECT

d. forth 28 (d --))
Print double number d followed by one space.

d.r forth 28 (du-)
Print double number d right-adjusted in a field which
is u bytes wide.

do= forth 26 (d -—- £f1g)
Leave a true flag if d is equal to zero; otherwise
return a false flag.

d< forth 26 (dl d2 -- fl1g)
Leave a true flag if dl is less than d2; otherwise
leave a false flag.

d= forth 26 (dl d2 -- f1g)
Leave a true flag if two double numbers are equal;
otherwise return a false flag.

a forth 26 (dl d2 -- fl1g)
Leave a true flag if d2 is greater than dl; otherwise
leave a false flag.

dabs forth 26 (dl -- d2)
Leave the absolute value of a 32-bit number.
date forth 4 (—— adr cnt)
Convert the system date to a string.
decimal forth 0 (-
Set the input/output numeric conversion base to ten.
definitions forth 0 (--)
Make the current vocabulary the same as the context
vocabulary.
delete editor 21 (-

Delete the string which was just found with one of
the searching commands.

depth forth 15 (== u)
Return the number of lines per page on the current
output device.

disk system 0 (—— adr)
Return the base address of the system disk parameters.

disking system 48 (-
Make the disking vocabulary the context vocabulary.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-28
WORD VOCABULARY BLOCK STACK EFFECT

dlv system 0 (—— adr)
A user variable used during the compiling of loops.

dmax forth 26 (dl 42 -- 43)
Leave the highest of the two signed double numbers.

dmin forth 26 (dl a2 -- 43)
Leave the lowest of the two signed double numbers.

dnegate forth 25 (dl -- -d1)
Leave the two's complement of a 32-bit number.

do forth 40 (-—- adrl adr2)
Use only in a definition. Marks the beginning of
a definite loop which must be terminated by loop
or +loop. See (do).

does> forth 0 (—)
Used in the definition of a defining word. Terminates
the words to be executed when the defining word executes
and begins the words to be executed when the words
defined with the new defining word are executed.

dpl forth 29 (—— adr)
A user variable which gives the number of digits
to the right of the last punctuation character in
the last double number seen by the interpreter.
A negative value indicates that the last number was
not punctuated.

dpr assembler 0 (-=)
Specify the direct page register as an operand of
the subsequent psh, pul, tfr, or exg instruction.

drcode disking 49 (—— adr)
Return the address of the system dependent drive
code for the current drive.

drop forth 0 (n-—-)
Drop the top number from the stack.

du< forth 26 (udl ud2 -- flg)
Leave a true flag if udl is less than ud2; otherwise
leave a false flag. This is an unsigned comparison.

dump forth 10 (adr cnt ——)

Print a memory dump of the specified number of bytes
beginning at the specified address.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-29

WORD

dup

editor

else

else

emit

empty

VOCABULARY BLOCK STACK EFFECT

forth 0 (n-—-nn)
Leave a copy of the number on top of the stack.

editor 23 (-
Delete the string which was just found with one of
the searching commands.

forth 6 (—-)
Make the editor vocabulary the context vocabulary.

assembler 8 (adrl -- adr2)
Compile an unconditional branch leaving the address
of the byte offset which later must be resolved,
then resolve the branch at adrl so that its target
will be the code which follows.

forth 39 (adrl -- adr2)
Use only in a definition. Marks the end of the "if-true"
phrase, and marks the beginning of the "if-false"
phrase.

forth 0 (c -
Executes the word whose execution address is in the
variable 'emit. Its initial value is (emit).

forth 0 (-
Removes all words from th= user's dictionary space.

empty-buffers forth 0 (--)

end-code

endcase

eol

eos

Mark all block buffers as empty. Updated blocks
are not written to disk and their modifications will
be lost.

forth 9 (--)
Used to terminate code and ;code definitions.

forth 38 (nl1 n2 222 -)
Use only in a definition. Terminates a case structure.
Stack effect varies according to the number of cases.

forth 15 (-—-)
Executes the word whose execution address is in the
current output device variable 'eol. See (eo0l).

forth 15 (-
Executes the word whose execution address is in the
current output device variable 'eos. See (eos).

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-30
WORD VOCABULARY BLOCK STACK EFFECT

eq assembler 0 (—— cond)
Specify the "z-bit-set" condition code.

erase forth 0 (adr u —-)
Fill memory beginning at adr with a sequence of u
nulls. If u is zero, no action is taken.

execute forth 0 (cfa ~—-)
Execute the word whose execution address is on the
stack.

exit forth 0 (—)

When used in a colon definition, execution of that
definition will stop at that point and return to
the calling word. When used on a load block, will
terminate loading at that point and return to the
calling word.

expect forth 0 (adr cnt ——)
Executes the word whose execution address is in the
system variable 'expect. Its initial value is (expect).

f editor 23 (-
Starting at the editing cursor position, "find" the
string which follows. Aborts if the string is not
found.

false forth 11 G == ££i)
Leave the constant which represents a boolean false.

fill forth 0 (adrl u b —-)
Fill memory beginning at adr with a sequence of u
copies of b. If u is zero, no action is taken.

find system 0 (adr —— adr ff | cfa b)
Search the dictionary for the string at adr. Leave
adr and return a zero if not found; otherwise leave
the word's execution address under its count byte.

first system 0 (—— adr)
A system constant which returns the beginning address
of the system disk buffer area.

flush forth 0 (-
Write all blocks to disk that have been flagged as
updated.

footer forth 31 (-—-)

Move to the bottom line of the current page and print
the system copyright message, then move to the top
of the next page.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-31
WORD VOCABULARY BLOCK STACK EFFECT

forget forth 0 (—)
Used in the form forget www to remove www (and all
words defined since www was defined) from the dictionary.

forth forth 0 (—-)
Make the forth vocabulary the context vocabulary.

forward system 0 (—- adr)
Mark the location of a forward branch which should
subsequently be resolved with resolve .

fxp forth 28 (—— adr)
A user variable which contains the maximum number
of digits which may occur to the right of the last
punctuation character in a double number. Numbers
with fewer digits will be scaled. A negative value
disables this feature.

g editor 22 (blk line --)
Get the specified line and insert it under the current
line which then becomes the current line.

ge assembler 9 (—— cond)
Specify the "greater-than-or-equal" condition code.

gets ’ editor 22 (blk line cnt --
Get the specified lines from the specified block
and insert them under the current line. The current
line becomes the last line inserted.

golden system 0 (= adr)
Return the address of the last saved dictionary state.
The data at this address is used by empty .

gt assembler 0 (-- cond)
Specify the "greater-than" condition code.

h forth 0 (-- adr)
A user variable which contains the address of the
next free byte in the dictionary.

ho forth 0 (-- adr)
A user variable that contains the dictionary origin.
Used by empty to re-origin the dictionary.

header forth 31 (-
Print the system header on the next page.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-32
WORD VOCABULARY BLOCK STACK EFFECT

here forth 0 (—— adr)
Return the address of the next free byte in the dicticnary.

hex forth 0 (—)
Set the input/output numeric conversion base to sixteen.

hi assembler 0 (== cond)
Specify the "hi"™ condition code.

hold forth 0 (c--)
Insert c into the pictured numeric output string.
Must be used betweern <# and #>.

home forth 15 (--)
Executes the word whose execution address is in the
current output device variable 'home. See (home).

hs assembler 9 (—— cond)
Specify the "higher-than-or-same" branch condition
code.

i editor 23 (-—-)

Insert the string which follows at the cursor.

i forth - 0 (—— index)
Return the current loop index to the parameter stack.
Must only be used within a loop.

id forth 17 (nfa —- adr cnt)
Convert a word's count byte address to a string which
can be used by type. The string is placed at pad.

id. forth 17 (nfa ——)
Print the name of the word whose count byte address
is given on the stack. Issue a carriage return if
it will not fit on the remainder of the current output
line.

if assembler 8 (cond -- adr)
Compile the machine code for a conditional forward
branch (the condition is given on the stack). Leave
the address of the relative offset which later must
be resolved.

if forth 39 (—— adr)
Use only in a definition. Marks the beginning of
a phrase to be executed if the top of the stack is
true; otherwise execution skips to the following
else or then. At run-time, the top of the stack is
removed.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-33
WORD VOCABULARY BLOCK STACK EFFECT

immediate forth 0 (-
Mark the last defined word as an immediate word.

ine forth 0 (—— adr)
Return the address of the next character in the interpreter's
input stream.

index forth 32 (beg 1im --)
Print the first lines of all blocks between beg and
lim.

input system 0 (adr --)

Make the specified device the current input device
for the current user. Usage: term input

insert editor 21 (—)
Insert the contents of the insert buffer at the position
of the cursor.

interpret forth 0 (—)
Interprets the input stream at the character indexed
by >in until the input stream is exhausted.

j forth 0 (== index)

Return the index of the next outer loop. May only

be used within a loop within a loop in che same definition.

4

k editor 22 (—

Exchange the contents of the insert buffer with the

contents of the find buffer. Allows the insertion

of text which has been deleted.

key forth 0 (=—c)
Executes the word whose execution address is in the
variable 'key. 1Its initial value is (key).

key? forth 0 (-- flg)
Execute the word whose execution address is in the
system variable 'key?. Its initial value is (key?).

1 editor 20 (=)
List the current editing block

1% forth 0 (-- adr)
Return the address within the current output device
record which contains the current line number on
which the cursor or print head is positioned.

copyright 1983 Frank Hogg Laboratory

-t

eFORTH MASTER GLOSSARY APPENDIX B-34
WORD VOCABULARY BLOCK STACK EFFECT

last forth 0 (—— adr)
A user variable which contains the address of the
count byte of the last word which was added to the

dictionary.

le assembler 9 (-—— cond)
Specify the "less-than-or-equal" condition code.

leave forth 40 (—)
An immediate word which compiles code to force immediate
termination of a loop at run-time. Must be used
in a definition and must be used within a loop.

limit system 0 (—— adr)
A system constant which returns the address of the
end of the system disk buffer area.

list forth 10 (blk ==)
List the specifiec¢ block.

listing forth 32 (blk ==)
Print the page on which the specified block falls.

literal forth 0 (n-—)
An immediate word which compiles the number on the
stack into the definition as a literal. At run-time,
n is pushed to the stack.

lo assembler 0 (== cond)
Specify the "lo" condition code.

load forth) (blk —-)
Begin interpretation of block blk. When finished,
interpretation continues with the words following
load.

locate forth 44 (—-)
Used in the form: 1locate www to list the block

from which www was loaded.
loop forth 40 (adrl adr2 --)

Use only in a definition. Marks the end of a definite
loop structure. See (loop).

1s assembler 9 (—— cond)
Specify the "less-than-or-same" condition code.

1t assembler 0 (—— cond)
Specify the "less-than" condition code.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-35

WORD VOCABULARY BLOCK STACK EFFECT

m* forth 27 (nl n2 --4)
Leave the signed 32-bit result of multiplying nl
by n2.

m*/ forth 27 (dl nl n2 —- 42)

Multiply dl by nl leaving a 48-bit intermediate result
which is then divided by n2 leaving a 32-bit result.

m+ forth 27 (dln--d2)
Leave the 32-bit result of adding n to dl. All values
are signed.

m/ forth 27 (dnl -—— n2)
Leave the signed 16-bit result of dividing 4 by nl.

mark system 36 (== adr)
Used by compiling words to mark the location of a
backward reference.

max forth 0 (nl n2 --n3)
Leave the greater of the top two numbers on the stack.

me forth 43 (== adr cnt)
A string variable which contains the user's initials.

mi assembler 0 (- cond)
N Specify the "n-bit-set" condition code.

min forth 0 (nl n2 =—- n3)
Leave the lesser of the top two numbers of the stack.
mod forth 0 (ul u2 -- u3)
Unsigned divide of ul by u2 leaving unsigned remainder
ul.
mon system 0 (-

Exit FORTH and return to the operating system.

move forth 0 (adrl adr2 u —-)
Move u bytes from adrl to adr2. Unlike cmove and
<cmove there is no danger of over-writing.

n editor 20 (-—)
Make the next block the current editing block.

ne assembler 9 (—— cond)
Specify the "not-equal" branch condition code.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-36
WORD VOCABULARY BLOCK STACK EFFECT

negate forth 0 (n---n)
Return the two's complement of n.

next assembler 0 (-
Compile the machine instructions which simulate the
FORTH machine's "next" function. Must be used at
each exit point in a code or ;code definition.

noop system 0 (-
This word performs no operation.

not assembler 0 (nl -- n2)
Negate the meaning of the preceeding condition code.
For example, "eq not" is equivalent to "ne", and
"cc not" is equivalent to "cs".

not forth 11 (ul -- u2)
Leave the one's complement of the number on the stack
(each bit is inverted).

number forth 29 (adr =- nor 4
Convert the string whose count byte is at the specified
address using the current base. Leaves a double
number if the string is punctuated; otherwise leave
a single number. The byte at adr is not used.

of forth 38 (—— adr)
Begins a phrase to be executed if the case select
value equals the number on top of the stack; otherwise
execution branches to the words following the next
else . See (of) .

ok forth 33 (—)
Make sure printer is positioned at the top of a page.
If not, issue a formfeed and print the system footer.

or forth 0 (ul u2 -- uld)
Leave the bitwise logical or of ul with u2.

origin system 0 (——- adr)
Return the base address of the system variable area.

output system 0 (adr —-)
Make the specified device the current output device
for the current user. Usage: printer output

over forth 0 (nl n2 -- nl n2 nl)
Leave a copy of the second number on the stack.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-37

WORD

P

pad

page

pPcr

pick

Pl

prev

print

printer

protect

ptr

quit

VOCABULARY BLOCK STACK EFFECT

editor 22 (--)
Put the text which follows onto the current line.

forth 0 (—— adr)
Return the address of a scratch pad area which is
84 bytes above the address returned by here . Used
to hold strings.

forth 15 (-=)
Executes the word whose execution address is in the
current output device variable 'page. See (page).

assembler 0 (--)
Specify the program counter as an operand of the
subsequent psh, pul, tfr, or exg instruction.

forth 12 (u-—-n)
Return the contents of the u-th stack value (not
counting u itself). Undefined for u less than one.
2 pick is equivalent to over. 1 pick is equivalent
to dup.

assembler 9 (=- cond)
Specify the "plus" branch condition code.

system 0 (—— adr)
A system variable which holds the address of the
most recently accessed disk buffer.

forth 33 (-
Redirect output to the system printer. All output
of following words is sent to the printer.

system 0 (== adr)
Device name for the system printer.

system 0 (—-)
Save the current state of the dictionary so that
it can subsequently be restored by executing empty

forth 0 (—— adr)
A user variable used as a pointer for i/o operations.

forth 0 (-
Clear both stacks and return control to the terminal.
No message is given to the user.

copyright 1983 FPrank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-38

WORD

r

r#

r/w

r0

r>

re

range

recurse

rel

repeat

repeat

VOCABULARY BLOCK STACK EFFECT

editor 23 (—-)
Replace the string which was just found with the
text which follows.

forth 0 (—— adr)
A user variable which contains the current character
position (cursor) as an offset from the beginning
of the current editing block.

forth 0 (adr blk dir -- adr)
Executes the word whose execution address is in the
variable 'r/w. Its initial value is (r/w).

forth 0 (—— adr)
A user variable that contains the address of the
bottom of the return stack.

forth 0 (--n)
Transfer n from the return stack to the paramneter
stack.

forth 0 (-——n)
Copy the top of the return stack onto the parameter
stack.

forth 38 (-- adr)
Begins a phrase to be executed if the case select
value is "within"™ the numbers on the stack; otherwise
execution branches to the associated "else". See
(range).

forth 36 (--)
Compiles a recursive call to the word being defined.

assembler 0 (adrl adr2 -- rel flg)
Return the relative offset between adr2 and adrl.
Returns a true flag if it is greater than 8 bits
wide.

assembler 8 (adrl adr2 --)
Compile an unconditional branch back to adrl, and
resolve the branch at adr2 to point to the code which
follows.

forth 39 (adrl adr2 --)
Use only in a definition. Marks the end of a "begin
.. while .. repeat" structure.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-39
WORD VOCABULARY BLOCK STACK EFFECT

resolve system 36 (adr —-)
Used by compiling words to resolve a forward reference
located at the specified address.

right forth 31 (adr cnt --)
Print the string at the specified address right adjusted
on the current print line.

roll forth 11 (u-)
Extract the u-th stack value to the top of the stack
(not counting u itself) moving the remaining values
into the vacated position. Undefined for u less
than one. 3 roll is equivalent to rot. 1 roll is
a null operation.

rot forth 0 (nl n2n3 -——n2n3 nl)
Rotate the top three values bringing the deepest
to the top.

s assembler 0 (-

Specify the S register as an operand of the subsequent
psh, pul, tfr, or exg instruction.

s editor 23 (blk -- blk)
Starting at the current editing block search for
the string which follows through all blocks up to
but not including the block specified on the stack.
Aborts if the string is not found.

s/b disking 49 (== adr)
Return the address of the parameter which tells how
many sectors are required to hold one block on the
disk in the current drive.

s/s disking 49 (== adr)
Return the address of the parameter which tells how
many sectors are on each side of the disk in the
current drive.

s0 forth 0 (=~ adr)
A user variable that contains the address of the
bottom of the stack and the start of the terminal
input buffer.

scan forth 0 (¢ adrl -- adr2 cnt))
Returns the starting address and count of the next
word in the input stream delimited by the character
"c".

copyright 1983 Frank Hogg Laboratory

e

eFORTH MASTER GLOSSARY APPENDIX B-40
WORD VOCABULARY BLOCK STACK EFFECT

scr forth 0 (—- adr)
Return the address of the user variable which holds
the number of the current editing block.

search editor 21 (-—-)
Starting at the current cursor position, search for
the string in the find buffer. Give an error message
and abort if the string is not found.

sectors disking 49 (—— adr)
Return the address of the parameter which tells how
many sectors are on one trck of the disk in the current
drive.

show forth 32 (beg 1lim -—-)
Print the documentation pages for all blocks between
beg and 1lim.

sign forth 0 (nd--4)
Insert a minus sign into the pictured numeric output
if n is negative. n is removed from the stack.

space forth 0 (-
Transmit one ASCII blank to the current output device.

spaces forth 0 (u-—-)
Transmit u ASCII blanks to the current output device.

speed disking 49 (—— adr)
Returns the address of the stepping speed for the
current drive.

state forth 0 (—— adr)
A user variable which if true means that a word is
being compiled; otherwise the interpreter is executing
each word in the input stream.

string forth 13 (b —)
Define a string variable which will hold strings
up to a maximum of b bytes in length. When a word
defined with string executes, it pushes the string's
address to the stack and its maximum count.

swap forth 0 (nl n2 —— n2 nl)
Exchange the top two stack values.

sysI/O0 system 0 (—— adr)
Return the base address of the i/o vectors for the
underlying system. This is the device "type" of term
(the system terminal).

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-41

WORD

system

tab

term

text

then

then

till

time

tracks

true

type

VOCABULARY BLOCK STACK EFFECT

forth 0 (——)
Make the system vocabulary the context vocabulary.

forth 18 (line --)
Make the specified line the current editing line.

forth 31 (u-—-)
Tab to column u. Backspace if column u is left of
the current cursor position.

system 0 (—— adr)
Device name for the system terminal.

forth 12 (c-—-)
Accept a string from the interpreter's input stream
delimited by the character c and leave it at pad.
pad is blank filled to 64 characters.

assembler 8 (adr ——)
Resolve the byte offset at the address on the stack
so that the target of the branch will be the code
which follows.

forth 39 (adr ==)
Use only in a definition. Marks the end of an "if-then"
conditional structure.

editor 23 (—)
Delete text from the cursor to (and including) the
string which follows.

forth 5 (—— adr cnt)
Convert the system time, if any, to a string.

disking 49 (—— adr)
Return the address of the number of tracks on the
current drive.

forth 11 (-——-tf)
Leave the constant which represents a boolean true.

forth 0 (adr cnt --)
Executes the word whose execution address is in the
variable 'type. Its initial value is (type).

assembler 0 (—-)
Specify the U register as an operand of the subsequent
psh, pul, tfr, or exg instruction.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-42

WORD

u/mod

u<

until

until

update

update

user

VOCABULARY BLOCK STACK EFFECT

editor 22 (-
Move all following lines down (the last line is lost),
then put the text which follows onto the line under
the current line. Make the inserted line the current
line.

forth 0 (ul u2 == ud)
Unsigned multiply of ul by u2 leaving a 32-bit result.

forth 0 (u-)
Print u followed by one space.

forth 0 (ul w2 --)
Print ul right adjusted in a field u2 characters
wide.

forth 0 (ud ul —— u2 uld)
Divide double number ud by ul leaving the remainder,
u2, and the quotient, u3. All values are unsigned.

forth 0 (ul u2 -- f1g)
Leave a true flag if ul is less than u2; otherwise
leave a false flag. ul and u2 are interpreted as
unsigned 16-bit numbers.

assembler 8 (adr cond —- .
Compile the machine code for a conditional branch
(the condition is given on the stack) back to the
address on the stack.

forth 39 (adr ——)
Use only in a definition. Marks the end of a "begin..until"
loop.

editor 18 (-
Mark the current editing block as being updated.
Optionally mark the block with the time, the user's
initials, and the date.

forth 0 (-
Mark the most recently referenced block buffer as
modified. If the buffer is needed for another block,
the modified block will be written to disk. Writing
can be forced by executing flush.

forth 0 (u-—-)
Create a name for a user variable which is offset
u bytes above the base address of the user variable
area. When the name is subsequently used, it returns
the address of that user variable.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-43

WORD

variable

veC

version

VOCABULARY BLOCK STACK EFFECT

forth 18 (-
Print the current line in the current editing block
and show the cursor position.

forth 0 (-
Used in the form wvariable vvv to create a 16-bit
variable. vvv is added to the dictionary and when
executed, the address of the variable's 16-bit value
is pushed to the stack.

assembler 0 (== cond)
Specify the "v-bit-clear" condition code.

system 7 «)
Returns the address of the system variable which
holds a 32-bit base 36 number indicating the version.

vocabulary forth 0 (-—-)

vs

while

while

width

wipe

within

Used in the form vocabulary vvv to create a new

vocabulary named vvv . When vvv is executed, it

becomes the context vocabulary. When created, vvv
is chained to the current vocabulary.

assembler 9 (=—— cond)
Specify the "v-bit-set" branch condition code.

assembler 8 (cond -- adr)
Compile the machine code for a conditional forward
branch (the condition is given on the stack). Leave
the address of the relative offset which later must
be resolved.

forth 39 (—— adr)
Use only in a definition. Marks the beginning of
a phrase to be executed if, at run time, the top
of the stack is non-zero. The phrase is terminated
with repeat .

forth 15 (== u)
Return the number of characters per line on the current
output device.

editor 16 (--)
Fill the current editing block with blanks.

forth 11 (nlo hi -- flg)
Leave a true flag if n is less than hi and greater
than or equal to lo; otherwise leave a false flag.

copyright 1983 Frank Hogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-44

WORD

word

words

Xor

Xy

copvriaght 1983

VOCABULARY BLOCK STACK EFFECT

forth 0 (c —--adr)
Reads the input stream until ¢ is encountered. The
text is placed at here with the character count in
the first byte. Leading occurences of c are skipped.

forth 17 (—)
List the words in the context vocabulary.

assembler 0 (—)
Specify the X register as an operand of the subsequent
psh, pul, tfr, or exg instruction.

editor 22 (-—-)
Delete the current line moving all following lines
up. The last line is filled with blanks.

forth 0 (ul u2 == u3)
Leave the bitwise logical exclusive or of ul with
u2.

forth 15 (col row -—-)
Executes the word whose execution address is in the
current output device variable 'xy. See (xy).

assembler 0 (-—)
Specify the Y register as an operand of the subsequent
psh, pul, tfr, or exg instruction.

editor 22 (-

Zip the cursor to the end of the text on the current
line.

Frank Hogg Laboratory

(L

sl . ¥ de mia

LR EW T s Sk
il
r =T
al- I
T
L] (X
Ll
i

-

APPENDIX C

eFORTH LISTINGS

This appendix contains listinugs of all eFORTH source blocks
which are common to most eFORTH implementations. Listings for

implementation specific source blocks
documentation for the implementation.

copyright 1983

are

included with the

Frank Hogg Laboratory

eFORTH LISTINGS APPENDIX C-2

Block # 0
0 (eFORTH SYSTEM DISK 12:47pm cee 23jan84)
1
2
3 eFORTH Version 1.0
4 by Charles E. Eaker
5
6 Distributed by Frank Hogg Laboratory, Inc.
7 The Regency Tower
8 770 James Street
9 Syracuse, New York 13203
10 (315) 474-7856
11
12
13
14
15
Block # 1
0 cr .(eFORTH INITIAL PROGRAM LOAD 12:47pm cee 23jan84)

1l forth definitions decimal

2 2 load | redefine (create) for locate utility
3 3 load install disk error trap

4 6 load eForth standard extensions

5 4 load system date

6 5 load system time

7 18 load eForth standard editor

8 24 load eForth double number electives

9 30 load eForth documentation electives

10 36 load
11 42 load
12 48 load
13 60 load
14 72 load

eForth compiler electives
eForth miscellaneous electives
eForth disking electives
hardware dependent electives
system dependent extensions

15 I'm cee system protect empty decimal exit
Block # 2
0 (create redefined for locate utility 12:47pm cee 23jan84)

1l (This block redefines the behavior of the word executed

2 by create. It compiles the number of the block a word
3 is loaded from as part of the word. This number is used
4 by locate to find and list the source block for the word.
5 This means that each word requires two additional bytes
6 of memory. This feature can be disabled by simply not

7 loading this block. 1In that event, locate, on block 44,
8 will not work properly.)

9

10 system definitions

11 : (create) (=--)) blk @ , (create) ;

12

13 ' (create) origin 20 + ! protect

14 forth definitions

15

copyright 1983 Frank Hogg Laboratory

eFORTH LISTINGS APPENDIX C-3

Block # 3

0 (disk error trap - 12:47pm cee 23jan84)
1 system definitions hex

2 : ?status (==)

3 disk 2- @ ?dup if

4 dup 80 and abort" Drives not ready."

5 dup 40 and abort" Disk is write protected.”

6 dup 20 and abort" Write fault."

7 dup 10 and abort" Sector not found on disk."

8 dup 08 and abort" CRC error."

9 dup 04 and abort" Lost data."
10 dup 02 and abort" Non-existent block."
11 then ; =
12
13 : (r/w) (adr blk dir -- adr) (r/w) ?status ;
14 decimal ' (r/w) origin 14 + ! protect

15 forth definitions

Block # 4
0 (date SetDate 12:47pm cee 23jan84)
1
2 8 string date (== adr cnt)
3
4 : SetDate (——) bl word count drop date cmove ;
5
6 SetDate 23jan84 (An example of how to set the date.)
7
8 exit
9
10
11
12
13
14
15
Block # 5
0 (time SetTime 12:47pm cee 23jan84)
1
2 8 string time (-- adr cnt)
3
4 : SetTime (-~) bl word count drop time cmove ;
5
6 SetTime 12:47pm (An example of how to set the time.)
-
8 exit
9
10
11
12
13
14
15

copyright 1983

Frank Hogg Laboratory

eFORTB LISTINGS APPENDIX C-4

Block # 6
0 cr .(eFORTH STANDARD EXTENSIONS 12:47pm cee 23jan84)
1
2 vocabulary editor immediate decimal
3
4 1 +load | system variables and constants
5 2 +load | assembler conditionals
6 3 +load | assembler extensions
7 4 +load | #% ###%# dump 1list .s
8 5 +load | stack and boolean extensions
9 6 +load | string operations
10 8 +load | i/o extensions
11 10 +load | block editing operations
12 11 +load | header operations words
13
14
15
Block % 7
0 (system constants and variables 12:47pm cee 23jan84)

1l system definitions

2 origin 2+ dup constant version
3 12 + dup constant 'r/w

4 2+ dup constant 'start
5 2+ dup constant 'number
6 2+ dup constant 'create
7 2+ dup constant 'key

8 2+ dup constant 'key?

9 2+ dup constant 'emit

10 2+ dup constant 'expect
11 2+ dup constant 'type
12 2+ dup constant 'bell
13 2+ dup constant 'bs drop
14 forth definitions
15 64 constant c/1 1024 constant b/blk
Block # 8
0 (assembler conditionals 12:47pm cee 23jan84)
1
2 assembler definitions hex
3 : bsr (adr ==) here 1+ rel if 17 ¢, , else 8D c, ¢, then ;
4 : bra (adr --) here 1+ rel if 16 ¢, , else bl ¢, ¢, then ;
5 : until (adr cond --) >r here 1+ rel
6 if 1- 10 ¢, > ¢, , else > ¢, ¢, then ;
7 ¢ if (cond -- adr) c, here 0 c, :
8 : then (adr --) here over rel
9 abort" branch too long." swap c! ;
10 : else (adrl -- adr2) bl if swap then ;
11 : repeat (adrl adr2 --) >r bra r> then ;
12 : again (adr --) bra ;
13 : while (cond -- adr) if ;
forth definitions decimal

—
[T,

copyright 1983 Frank Hogg Laboratory

eFORTH LISTINGS APPENDIX C-5

Block # 9
0 (assembler extensions 12:47pm cee 23jan84)
1 (branch conditions not defined in the pre-compiled portion.)
2 assembler definitions
3 :ne (-- cond) eq not ; : pl (-- cond) mi not ;
4 : 1s (-- cond) hi not ; : hs (=~ cond) lo not ;
5 : vs (-- cond) vc not ;
6 : ge (-- cond) 1t not ; le (== cond) gt not ;
7 : cc (== cond) lo not ; : cs (-- cond) cc not ;
8
9 forth definitions
10 : ;code system compile (;code)
11 [compile] assembler r> drop ; immediate
12 : code create here dup 2- ! [compilel] assembler ;
13 : end-code current @ context ! ;
14
15
Block # 10
0 (#% #### dump 1list .s 12:47pm 23jan84)
1
2 : #% (b =-) base @ >r hex 0 <# # # #> type space r> base ! ;
3 : ##%% ((u =—) base @ >r
4 hex 0 <# # # # # #> type space r> base ! ;
5 : dump (adr cnt ---) base @ >r hex c¢r 5 spaces
6 over 16 0 do dup 15 and 45 emit . 1+ loop drop space
1 over 16 0 do dup 15 and 1 .r 1+ loop drop r> base !
8 over + swap do cr i ###% 16 0 do i j + c@ ## loop space
9 16 0 do i j + c@ 127 and dup bl < if drop 95 then emit loop
10 16 +loop ;
11 : list (scr ===) dup scr ! cr ." Block # " . b/blk ¢/1 / O
12 docr i 2 .r space scr @ 0= i b/blk c/1 / 1- = and ?leave
13 scr @ block i ¢/1 * + c/1 -trailing type loop cr ;
14 : .s (print stack) cr 's s0 @ 2- do i @ . -2 +loop ;
15
Block # 11
0 (stack and boolean extensions 12:47pm cee 23jan84)
l code roll (u --)
2 0 ,u 1ldd 0 ,u addd d,u leax 0 ,x 1ldd 0 ,u std
3 u pshs begin r——x 1ldd 2 ,x std 0 ,s cmpx eq until
4 2 ,u leau 2 ,s leas next end-code
5 code pick (u =--n)
6 0 ,u 1ldd 0 ,u addd d,u 1dd 0 ,u std next end-code
7 code 2over 4 ,u ld4dd 6 ,u 1ldx d x pshu next end-code
8 code 2swap 0 ,u ldd 4 ,u 1ldx 0 ,u stx 4 ,u std
9 2 ,u 1ldd 6 ,u 1ldx 2 ,u stx 6 ,u std
10 next end-code
11 : 2rot >r >r 2swap r> r> 2swap ;
12 code not (bool -- bool) 0 ,u com 1l ,u com next end-code
13 -1 constant true
14 0 constant false
15 : within (n lo hi -- flg) >r 1- over < swap r> < and ;

copyright 1983 Frank Hogg Laboratory

eFORTH LISTINGS

Block #

12

0 (string extensions

APPENDIX C-6

12:47pm cee 23jan84)

pad c/1 2+ blank word pad over c@ 2+ cmove ;

0 ,u sty 4 ,u ldy

€q

eq not
¢ X++ subd eq not until

Yy puls

12:47pm cee 23jan84)

| run-time word compiled by

d y pshu d,y leay next end-code

| compile or interpret an ascii character

(a "smart" worg@d)

if [compilel literal then ; immediate

| compile or interpret a string literal

"smart" word)

" word c@ 1+ allot

else ascii " text pad count then ; immediate

l: text (¢ ==
2
3
4 code -text (adrl cnt adr2 -- flg)
5 y pshs 0 ,u 1ldx
6 2 ,u 1ld4d d,x leay
7 1 # bitb eq not
8 if Y+ lda ¢ X+ suba
9 if swap then
10 begin 0 ,u cmpx
11 if swap ,y++ 1ldd
12 then then
13 4 ,u std 4 ,u leau
14 next end-code
15 ==>
Block # 13
0 (string extensions
1l system definitions
2 code (") (== adr cnt)
3 Y+ 1ldb clra
4
5 forth definitions
6 ascii (==
7 bl word 1+ c@ state @
8
9 : " (=-—)
10 state @ (a
g | if compile system (") ascii
12
13 : string (b --)

=
TR

Block #

14

0 (i/0 extensions
1l system definitions

2 20 u
3 22 u
4
5 : 'de
6 12
7 2+
8 2+
9 2+
10 2+
11 2+
12 2+
13 2+
14 forth
15

ser
ser

vice
dup
dup
dup
dup
dup
dup
dup

def

'put
'get

(b =-
'device
'device
'device
'device
'device
'device
'device
'device

initions

copyright 1983

| create string variable of length b
create dup ¢, 0 do bl ¢, loop does> count ;

12:47pm cee 23jan84)

I holds address of current output device
| holds address of current input device

) create c, does> c@ 'put @ + ;

'depth
'width
'cr
'page
'home
lxy
'eol
'eos
-—>

I
!
I
!
|
I
l

address of device depth
address of device width
cr execution vector for this device
page n n " n n
home cursor + " "
position cursor "
erase to end of line "
erase to end of screen

Prank Hogg Laboratory

&

eFORTH LISTINGS APPENDIX C-7

?cr (cnt ==) width c# @ - > if cr then ;

Block # 15
0 (i/0 extensions 12:47pm cee 23jan84)
1
2 : width (-—u system 'width € ;
3 : depth (--u) system 'depth € ;
4 : xy (xy =-=-) system 'xy @ execute ;
5 : page (--=) system 'page @ execute 0 1# ! O c# ! ;
6 : home (--) system 'home @ execute ;
7 : eol (~-=) system 'eol @ execute ;
8 : eos (--) system 'eos @ execute ;
9
10
11
12

13
14
15
Block # 16
0 (block editing operations 12:47pm cee 23jan84)
1 editor definitions
2 : copy (0ld new ==) flush swap block 2- ! update ;
3 : clear (blk === block b/blk blank update ;
4 : clears (blk cnt ==) 0 ?2do dup i + clear loop drop ;
5 : wipe (==) scr @ clear ;
6 : lpass (from to cnt -- nextfrom nextto)
7 here 4 pick 3 pick over + swap
8 ?do i true r/w b/blk + loop drop
9 here 3 pick 3 pick over + swap
10 ?do i false r/w b/blk + loop drop
11 rot over + rot rot + ;
12 : copies (from to cnt ==)
13 's 256 - here - b/blk / dup >r /mod swap >r
14 0 ?2do 'r 6 + @ lpass loop r> lpass 2drop r> drop ;

15 forth definitions

Block # 17
0 (header operations words 12:47pm cee 23jan84)
1l code <nfa (cfa -- nfa)
2 X pulu -1 ,x leax begin r—X tst mi until
3 x pshu next end-code
4 code cfa> (nfa -- cfa)
5 X pulu X+ 1ldb 31 # andb b,x leax x pshu
6 next end-code
7 : <1lfa (cfa -- 1fa) <nfa 2- ;
8 : body (cfa -- pfa) 2+ ;
9 : id (nfa -- adr cnt) count 31 and pad c! pad count cmove
10 pad dup c@ + dup c@ 127 and swap c! pad count ;
11 : id. (nfa --)
12 id dup 1+ width c# @ - > if cr then type space ;
13 : words (==)
14 cr context @ @ begin ?dup while dup id. 2- @ repeat cr ;
15

copyright 1983 Frank Hogg Laboratory

eFORTH LISTINGS APPENDIX C-8

Block # 18
0 cr .(eFORTH STANDARD EDITOR 12:47pm cee 23jan84)
1l editor definitions
2 variable 'update ' update 'update !
3 : update 'update @ execute ;
4
5 : at (-- adr rem) r# @ dup b/blk 1- over u<
6 abort" off of current editing screen."
7 scr @ block + c/1 rot c¢/1 1- and - ;
8 : at0 (== adr c/1) at c¢/1 - r# +! drop at ;
9
10 forth definitions
11 v (==) editor cr space
12 at 2dup c/1 swap - dup >r - r> type 94 emit type
13 space r# @ c/1 / . [compilel editor ;
14 : £t (n-—-) c/1 * ! v ;
15 editor definitions 1 +load forth definitions
Block # 19
0 (-match 12:47pm cee 23jan84)
1
2 code -match (adrl cntl adr2 cnt2 -- adr3 flg)
3 0 ,u 1ldd d y pshs 6 ,u ldx 4 ,u 1dd bl if
4 begin 6 ,u 1ldx 1l ,x leax 6 ,u stx 4 ,u 1ldd
5 1 # subd 4 ,u std swap then
6 0 ,u cmpd lo not if 0 ,u 1ldd 0 ,s std 2 ,u ldy
7 begin ,y+ lda ¢ X+ cmpa rot eq until
8 d puls 1 # subd d pshs eq until clrb
9 begin clra 4 ,u leau 0 ,u std 2 ,u stx d y puls next
10 swap then 4 ,u 1dd 6 ,u ldx d,x leax 1 # 1db bra
11 end-code
12
13 -=>
14
15
Block # 20
0 (editor primitives 12:47pm cee 23jan84)
1
2 :1(=--) scr @ list ;
3 :b (=-=-) =1scr +! 0 r# ! ;
4 :n (--) 1scr +! 0 r# ! ;
5 : #i (== adr) pad c/1 2+ + ;
6 : #f (-- adr) pad c/1 2+ 2* + ;
7 ¢« >1 (-=-) 94 text pad c@ if pad #i c/1 2+ cmove then ;
8 : > (==) 94 text pad c@ if pad #f c/1 2+ cmove then ;
9
10 -=>
11
12
13
14
15

copyright 1983 Frank Hogg Laboratory

‘eur’

s

eFORTH LISTINGS APPENDIX C-9

Block # 21
0 (insert delete and search primitives 12:47pm cee 23jan84)

insert (--)
at dup #i c@ min dup >r - 0 max over dup r@ + rot <cmove
#i 1+ swap r@ cmove r> r# +! update ;
: delete (==)
#f c@ >r r@ negate r# +! at drop r@ + at r@ - 2dup + >r
cmove r> r> blank update ;
-search (-- flg)
at drop dup >r b/blk r# @ - 0 max #f count -match
swap r> - over if drop else r# +! then ;
?found (flg --)
if #f count type ." ?" quit then ;
: search (--)
14 >f -search ?found ;
15 =-=>

—
WNHOWVLLNIAUL D WN H
L 11 L1} -

Block # 22
0 (line editing commands 12:47pm cee 23jan84)

1

2 x (==) at0 -trailing #i c! #i count cmove

8 at over + swap dup >r b/blk r# @ - ¢c/1 - dup >r cmove

4 r> r> swap + c¢/1 blank update ;

5 :p (--) at0 blank >i insert ;

6 :u (=——) c/1l r# +! at0 over + b/blk r# @ - c/1 - <cmove p ;
7 : g (scr line --) c/1 * swap block + c/1 -trailing

8 #i c! #i count cmove u ;

9 : gets (scr line cnt =--) over + swap ?2do dup i g loop drop ;
10 : z (==) at0 -trailing r# +! drop ;

11 : k (=——) #i pad 132 cmove pad #f 66 cmove ;

12 -=>

Block # 23
0 (string editing commands 12:47pm cee 23jan84)

: till (==) >f at over >r #f count -match ?found r> -
dup #f c! at drop #f count cmove r# +! delete v ;

?2do drop -search dup 0= if v forth i . leave then n loop

1
2
3
4
5 : s (scr == scr) >f 0 over scr @
6
7 ?found ;

8

9

search v ;

s £ ()
10 : e (==) delete v ;
11 : i (==) >i insert v ;
12 : a (=-=) z i ;
13 r (==) delete i ;
14 : @ (==) search e ;

copyright 1983 Frank Hogg Laboratory

eFORTH LISTINGS

APPENDIX C-10

Block # 24
0 cr .(eFORTH DOUBLE NUMBERS 12:47pm cee 23jan84)
1
2 forth definitions
3 1 +load | 2constant 2variable d+ dnegate
4 2 +load | double number operations
5 3 +load | mixed precision operations
6 4 +load | double number output
7 5 +load | double number input - interpretation only
8
9 exit
10
11
12
13
14
15
Block # 25
0 (2variable 2constant d+ dnegate 12:47pm cee 23jan84)
1
2 ¢ 2constant (d =--) create , , ;code 2 ,x 1ldd 4 ,x 1dx
3 d x pshu next end-code
4 0 0 2constant 0.
5 : 2variable (=--) variable 0 , ;
6 code d+ (dl d2 -- 43)
7 2 ,u ldd 6 ,u addd 6 ,u std
8 0 ,u 1dd 5 ,u adcb 4 ,u adca
9 4 ,u std 4 ,u leau next end-code
10 code dnegate (d1 -- =-dl)
11 clra clrb 2 ,u subd 2 ,u std 0 # 1d4d
12 1 ,u sbcb 0 ,u sbca 0 ,u std
13 next end-code
14
15
Block # 26
0 (double number operations 12:47pm cee 23jan84)
1
2 : dabs (d1 -- 42) dup 0< if dnegate then ;
3 : d- (dl d2 -- d3) dnegate 4+ ;
4 : d0= (4d -- f1g) or 0= ;
5 : d= (dl d2 -- f1g) d- d4do= ;
6 : d< (dl d2 -- f1g) d- swap drop 0< ;
7 ¢+ ad> (dl d2 -- flg) 2swap d< ;
8 : dmin (41 42 -- 43) 2over 2over d> if 2swap then 2drop ;
9 : dmax (dl d2 -- 43) 2over 2over d< if 2swap then 2drop ;
10 '
11 code du< (udl ud2 -- flg)
12 4 ,u 1ldd 0 ,u cmpd
13 lo not if 6 ,u 1ldd 2 ,u cmpd then
14 0 # 1d4d lo if coma comb then
15 6 su leau 0 ,u std next end-code

copyright 1983

Prank Hogg Laboratory

o~
)

eFORTH LISTINGS APPENDIX C-11

Block # 27
(mixed precision arithmetic 12:47pm cee 23jan84)

t:m+ (dl n--d2) dup 0< d+ ;
:m/ (d nl -- n2)
2dup xor >r abs >r dabs r> u/mod
r> 0< if negate then swap drop ;
:m* (nl n2 --d4d)
2dup xor >r abs swap abs u*
r> 0< if dnegate then ;
: * (nl n2 n3 -- n4) > m* r> m/ ;
m*/ (d1 nl n2 -- 42) 2 pick 4 pick xor >r
>r abs >r dabs r> 2>r r@ u* 0 2r> u* d4d+
r@ abs u/mod r@ abs swap >r u/mod r> rot drop
2r> xor 0< if dnegate then ;

-
MHOWVLONAUTEWNHO

= =
Ve w

Block # 28
(double number output 12:47pm cee 23jan84)

52 user fxp -1 fxp !

:dor (du =)
>r swap over dabs <% fxp @ 0< 0=
if fxp @ ?dup if 0 do # loop then ascii . hold
begin 3 0 do 2dup or if # else leave then loop

2dup or dup if ascii , hold then 0= until

else #s then sign #> r> over - spaces type ;

d. (4 --)
0 d.r space ;

-
NHFOLVLONOAULIEWNKHO

exit

-
v W

Block # 29
(double number input 12:47pm cee 23jan84)

54 user dpl

: number (adr -- n or d)
0 dpl ! dup 1+ c@ ascii - = dup >r - 0 0 rot
begin >binary dup c@ bl -
while dup c@ dup ascii : =
swap ascii , ascii 0 within or dup 0= abort" 2" dpl !
repeat drop r> if dnegate then
10 dpl @ if cnt @ else drop -1 then dpl ! ;

VCoNoT e WNMDEHO

12 system ' number 'number ! protect

copyright 1983 Frank Hogg Laboratory

eFORTH L.ISTINGS

APPENDIX C-12

MENTATION ELECTIVES 12:47pm cee Zz3jan84)

t center footer header
sting show
ontrol words

footer header
- dup 0<
op else spaces then ;

12:47pm cee 23jan84)

) width 2/ over 2/ - tab type ;

width over - tab type ;

pth 2- swap ?do cr loop
83"
" right page ;

if footer then

" eFORTH DOCUMENTATION" center

Block # 30
0 cr .¢ eFORTH DOCU
1
2 forth definitions
3 1l +load | tab righ
4 2 +load | index 1i
5 3 +load | printer c
6 exit
7
e
9
10
11
12
13
14
15
Block # 31
0 (tab center right
l :tab (n--) c# @
2 if abs 0 do bs 1lo
3 : center (adr cnt --
4 : right (adr cnt -)
5
6 : footer (=--)
7 1# @ depth mod de
8 cr ." copyright 19
9 " Charles E. Eaker
10
11 : header (-) 1% @
12 cr cr time type
13
14 date right cr cr
15
Block # 32
0 (index 1listing show
1
2 : index (nl n2 ---)
3 swap dup 60 mod if
4 do i 60 mod if cr e
5 i block i 5 .r s
6 loop cr ;
7
8 : listing (blk =--)
9 3/ 3 * dup 3 + sw
10
11 : show (beg end --)
12
13
14
15

copyright 1983

’

3/page 12:47pm cee 23jan84)

header then
lse header then
pace c/1 -trailing type

header
ap do cr i list loop ;

swap do i listing 3 +loop

.
’

Frank Hogg Laboratory

-y

eFORTH LISTINGS APPENDIX C-13

Block # 33
0 (printer control words 12:47pm cee 23jan84)
1 (define and install printer form-feed and fancy cr)
2 system definitions :
3 : FormFeed (==) 12 emit ; (define it)
4 : (cr) (——) key?
5 if key 27 =
6 if begin key? until key 13 = abort" aborted." then
7 then (cr) 0 c# ! 1 1% +! ;
8
9 printer output ' FormFeed 'page ! ' (cr) 'cr !
10 term output ' (cr) 'cr !
11
12 forth definitions
13 : print (--) system printer output ;
14 : ok (==) footer ;
15
Block # 34
0 (print vocabularies 12:47pm cee 23jan84)
1
2 header
3 .(FORTH VOCABULARY) forth words cr cr
4 .(SYSTEM VOCABULARY) system words cr cr
5 .(EDITOR VOCABULARY) editor words cr cr
6 .(ASSEMBLER VOCABULARY) assembler words cr cr
7
8 exit
9

10 To get a listing of words in the vocabularies, just load this
11 block. To send it to the printer, just enter
12 print 40 load ok

Block # 35
0 (reserved 12:47pm cee 23jan84)

=
WNhHhHOOLVOSNOAWULEE WND -

—
(TN

copyright 1983 Frank Hogg Laboratory

eFORTH LISTINGS APPENDIX C-14

Block # 36
Ovic e /%(eFORTH COMPILER ELECTIVES 12:47pm cee 23jan84)
1
2 system definitions
3 : resolve (adr =--) here swap ! ;
4 : mark (== adr) here ;
5 : back (adr --) (]
6
7 forth definitions
8 : recurse (-) | compile a recursive call
9 last @ cfa> , ; immediate
10
11 1l +load | positional case structure
12 3 +load | compiler security
13
14 exit
15
Block # 37 :
0 (keyed case run-time words 12:47pm cee 23jan84)
1
2 system definitions
3 : ?next (used by case run-time words) r> drop ?dup
4 if 0< if drop else 2drop then r> 2+ else r> @ then >r ;
5 : (of) over = ?next ;
6 : (<of) over swap < ?next ;
7 : (>0f) over swap > ?next ;
8 : (range) 3 pick >r within r> swap ?next ;
9 : ("of) 2over drop -text 0= negate ?next ;
10 forth definitions
11
12 -—>
13
14
15
Block # 38

0 (keyed cas

: of
: <of

>of
range

: "of

s case

: endcase

Wo~NAaATUVeWN -
L] e ue

-
N O

=
v W

copyright 1983

e compiling words 12:47pm cee 23jan84)

system compile (of) forward ; immediate

system compile (<of) forward ; immediate

system compile (>0f) forward ; immediate

system compile (range) forward ; immediate

system compile ("of) forward 1 ptr @ ! ; immediate
0 's ptr ! 0 ; immediate

compile drop ptr @ @ if compile drop then

begin ?dup while system resolve repeat drop ;
immediate

Frank Hogg Laboratory

eFORTH LISTINGS APPENDIX C-15

Block # 39
0 (standard conditionals redefined 12:47pm cee 23jan84)
1 56 user csp
2 2comp (--) state @ 0= abort" Compilation only." ;
3 : ?pairs (nn -) ?comp - abort" syntax error." ;
4 : begin ?2comp [compilel] begin 1 ; immediate
5 : until 1 ?pairs [compilel until ; immediate
6 : else 6 over = if drop [compilel else 5
7 else 2 ?pairs [compile] else 2 then ; immediate
8 : if ?comp [compile] if 2 ; immediate
9 : then 2 ?pairs [compilel] then ; immediate
10 : while ?comp [compile]l while 4 ; immediate
11l : repeat 4 ?pairs >r 1 ?pairs r> [compile] repeat ; immediate
12 : again 1l ?pairs [compile]l again ; immediate
13 assembler definitions
14 : begin here ; | The one above won't work in the assembler.

15 forth definitions -—>

Block # 40

0 (case and loop words redefined 12:47pm cee 23jan84)
1l : case ?2comp [compilel] case 5 ; immediate

2 : of 5 ?pairs [compilel of 6 ; immediate

3 : <of 5 ?pairs [compile] <of 6 ; immediate

4 : >of 5 ?pairs [compilel >o0f 6 ; immediate

5 range 5 ?pairs [compilel range 6 ; immediate

6 : "of 5 ?pairs [compilel "of 6 ; immediate

7 : endcase 6 ?pairs [compile]l endcase ; immediate

8 : do ?comp [compile] do 3 ; immediate

9 ?do ?2comp [compile]l] ?do 3 ; immediate
10 : loop 3 ?pairs [compilel loop ; immediate
11 : +loop 3 ?pairs [compilel +loop ; immediate

12 ?loop system dlv @ 0= abort" must be used in a loop." ;
13 leave ?loop [compilel] leave ; immediate
14 : ?leave ?loop [compilel ?leave ; immediate
15 -=>
Block # 41

0 (colon and semicolon redefined 12:47pm cee 23jan84)

: state @ abort" execution only." 's csp ! : ; immediate
(The old version of the colon is not immediate.)

; (==) ?comp 's csp @ - abort" incomplete definition."
compile exit r> drop ; immediate

(Redefine word executed by create to warn when a word is being
redefined.)
10 system definitions

CoOoONAATTLS WN -

11 : (create) >in @ bl word system find forth

12 if cr here count type ." isn't unique." then drop >in !
13 (create) ;

14 ' (create) 'create !

15 system protect forth definitions

copyright 1983 Frank Hogg Laboratory

eFORTH LISTINGS

Block # 42
0 cr .(eFORTH MISCELLANEOUS ELECTIVES
1
2 1 +load | block marking utility
3 2 +load | locate utility
4
5 exit
6
7
8
9
10
11
12
13
14
15
Block # 43

0 (block marking facility
1 forth definitions

2 4 string me (-- adr cnt)

3 :I'm (--) bl text pad 1+ me cmove ;
4 editor definitions

5 ¢« Mark (=—) | Mark block with id string
6 scr @ block >r

7 time r@ c/1 21 - + swap cmove

8 bl r@ c/l1 14 - + c!

9 me r@ c/1 13 - + swap cmove
10 date ré c/1 9 - + swap cmove

11 bl re c/1 2- + c!
12 ascii) > c/1 1- + c!

13 forth update ;
14 ' Mark 'update ! system protect
15 forth definitions

APPENDIX C-16

12:47pm cee 23jan84)

12:47pm cee 23jan84)

12:47pm cee 23jan84)

Block & 44
0 (locate utility
1
2 (This word assumes that block 2 has been loaded.)
3
4 : locate (=-=)
5 ' dup system ['] ?status < swap <1lfa 2- @ dup 0= rot or
6 abort" wasn't loaded.”" list ;
2
8
9
10
11
12

[y
v W

copyright 1983

Frank Hogg Laboratory

-

eFORTH LISTINGS APPENDIX C-17

Block # 45
0 (reserved 12:47pm cee 23jan84)

WoONAATUVI & WN -

e el T
N WO

Block # 46
0 (reserved 12:47pm cee 23jan84)

VONALIEWN

—
—o

[y
(0, I YREN}

Block # 47
0 (reserved 12:47pm cee 23jan84)

LCoOoNAULL&EWN K-

[
NbWNHO

copyright 1983 Frank Hogg Laboratory

eFORTH LISTINGS APPENDIX C-18

Block # 48
0 ichta. (eFORTH DISKING ELECTIVES 12:47pm cee 23jan84)
1
2 system definitions
3 vocabulary disking immediate
4 disking definitions
5 1l +load | Drive table field names
6 2 +load | disking primitives
7 3 +load | Sectorcounts SetSides
8 4 +load | ClearDisk Remove Backup Restore ReadSector WriteSec
9 5 +load | Claim Release Mount
10
11 forth definitions exit
12
13
14
15
Block # 49
0 (drive parameter record fields 12:47pm cee 23jan84)
1
2 : DriveField (offset bytes -- offset) | create field name
3 create over c, + does> c@ disk 2- 2- @ + ;
4
5 0 2 DriveField blocks | number of blocks.
6 1l DriveField sectors | number of sectors/track
7 1l DriveField s/s | sectors/side
8 2 DriveField b/s | bytes/sector
9 1 DriveField s/b | sectors/block
10 1l DriveField Osector# | first phys. sector # on track
11 1l DriveField tracks | number of tracks
12 1l DriveField drcode | physical drive code
13 1l DriveField speed | stepping speed
14 drop
15
Block # 50
0 (drive drive0 >drive bounds 12:47pm cee 23jan84)
1
2 variable 'claim (-- adr) ' 2drop 'claim !
3 variable 'config (=- adr) ' noop ‘config !
4
5 : Configure (--) 'config @ execute ;
6 : Size (== cnt) disk 2+ c@ ;
7 : Drive (== adr) disk 2- 2- ;
8 ¢ DriveO (=-- adr) disk 3 + ;
9 : >Drive (dr#% --) | Set current Drive.
10 dup 3 > abort" Non-existent drive."
11 disk 2+ count rot * + Drive ! ;
12 : Bounds (-- org cnt)
13 0 Drive @ Drive0 ?2do i @ + 16 +loop Drive @ @ ;
14
15

copyright 1983 Frank Hogg Laboratory

eFORTH LISTINGS

N AN AN AN AN

(

5"
5"
5"
8"
8"
8"

Block # 51
0 (SectorCounts SetSides
1
2 create SectorCounts (=-- adr)
3 (1 side 2 sides
4 10 ¢, 10 c, 20 c, 10 c,
5 17 ¢, 17 ¢, 34 ¢, 17 c,
6 18 ¢, 18 ¢, 36 c, 18 c,
7 15 ¢, 15¢, 30 ¢, 15 c,
8 26 c, 26 ¢, 52 c, 26 c,
9 29 ¢, 29 ¢, 58 ¢, 29 c,
10 0 , (end of table sentinel

APPENDIX C-19

12:47pm cee 23jan84)

)
single-density)
double-sensity FHL FLEX)
double-density)
single-density)
double-density)

SWTP extra-density)
)

11 here SectorCounts - 2- 2/ constant Entries (=-- size)
12 : SetSides (sectors =--)
Entries 0 do 2dup ce@
1+ c@ ?dup 0= abort" Unrecognizable format."

Block # 52
0 (ClearDisk Remove BackUp

s/s c!

sectors c!

°
4

SectorCounts
?leave 2+ loop

12:47pm cee 23jan84)

l : ClearDisk (==) pad b/blk blank
2 pad Bounds over + swap ?do i false r/w loop drop ;
3
4 : Remove (dr# --) >Drive 0 blocks ! ;
5
6 : BackUp (FromDr# ToDr# --)
7 swap >Drive Bounds rot >Drive Bounds min editor copies ;
8
9 : Restore (==) origin 10 + @ execute ;
10
11 : ReadSector (adr dadr --)
12 4 0 do origin 6 + @ execute 0= ?leave Restore loop ?status ;
13
14 : WriteSector (adr dadr --)
15 4 0 do origin 8 + @ execute 0= ?leave Restore loop ?status ;
Block # 53
0 (Claim Release Mount 12:47pm cee 23jan84)
1
2 : Claim (cnt --) Configure sectors c@ SetSides
3 dup blocks ! s/b c@ * sectors c€ /mod 'claim @ execute
4 Bounds drop dup scr ! block dup c/1 blank
5 10272 over ! 2 r# ! editor >i insert
6 Drive @ swap 1008 + Size cmove ;
2
8 : Release (cnt =--)
9 Configure tracks c@ sectors c@ * swap - Claim ;
10
11 : Mount (dr# --)
12 >Drive Bounds drop block
13 dup @ 10272 - abort" Unclaimed Disk."
14 1008 + Drive @ Size cmove ;
15

copyright 1983

Frank Hogg Laboratory

eFORTH LISTINGS APPENDIX C-20
Block # 54

—
MHOWVODNAULEWNHO

()
(5, IR}

Block # 55

VoAU WNDHFHO

Block # 56

VCoNoOaATUdWNHEHFHO

=
NBWNHO

copyright 1983 FPrank Hogg Laboratory

eFORTH LISTINGS APPENDIX C-21

Block # 57

VCoNAANLEBWNHFHO

[y
N O

=
VbW

Block # 58

oA WNDEFO

Block & 59

(e
NHOWVONAUEWNKHO

= =
(5, N

copyright 1983 Frank Hogg Laboratory

eFORTH LISTINGS APPENDIX C-22

Block # 60
0 cr .(HARDWARE DEPENDENT OPTIONS 12:47pm cee 23jan84)
1
2 (Remove the "I" from lines which apply to your system.)
31 1 +load | 132 column printer such as Epson MX80
4 | 2 +load | cursor control - eFORTH/CoCo
5 1 3 +loaé@ | cursor control - FHL FLEX
6 | 4 +load | cursor control - TeleVideo
7 1 5 +load | cursor control - template
8 exit
9 The other blocks contain alternate definitions of date and
10 time which take advantage of various hardware capabilities.
11
12 If you have FLEX then block 78 should replace block 4.
13
14 If you have a Gimix CPU board, then 78 should replace 4 and
15
Block # 61
0 (index 1listing show 6/page 12:47pm cee 23jan84)
1
2 : index (nl n2 =---)
3 swap dup 60 mod if header then
4 do i 60 mod if cr else header then
5 i block i 5 .r space c/1 -trailing type loop cr ;
6 : list2 (blk =-) scr ! cr ." Block # " scr @ 4 .r
7 54 spaces ." Block " scr € 1+ 4 .r b/blk c/1 / 0
8 do cr i 2 .r space scr @ block i c/1 * + c/1 type space
9 scr @ 1+ block i ¢/1 * + c/1 type loop cr ;
10 : listing (scr =--) header
11 6 / 6 * dup 6 + swap do cr i list2 2 +loop ;

12 : show (beg end --) swap do i listing 6 +loop ;

14 system printer output 132 'width ! term output forth

Block # 62
0 (cursor control - eFORTH/CoCo 12:47pm cee 23jan84)
1 (These versions are for the Color Computer version of eFORTE.)

2 system definitions

3 : (page) (==) 26 emit ;

4 : (xy) (xy =-—) 20 emit 32 + emit 32 + emit ;
5 : (home) (==) 30 emit ;

6 : (e0l) (--) 5 emit ;

7 : (eos) (=-=) 19 emit ;

8

9 term output ' (page) 'page !
10 ' (xy) 'xy !
11 ' (home) 'home !
12 ' (eos) 'eos !
13 ' (eol) 'eol !
14

15

copyright 1983 Frank Hogg Laboratory

'
Now !

eFORTH LISTINGS APPENDIX C-23

Block # 63
0 (cursor control - FHL FLEX 12:47pm cee 23jan84)
1 (These versions are for FHL Color Computer FLEX)
2 system definitions
3 : (page) (==) 2 emit ;
4 : (xy) (xy ——) 20 emit 32 + emit 32 + emit ;
5 : (home) (==) 15 emit ;
6 : (e0l) (=-=-) 5 emit ;
7 :« (eos) (==) 19 emit ;
8
9 term output ' (page) 'page !
10 ' (xy) 'xy !
11 ' (home) 'home !
12 ' (eos) 'eos !
13 ' (eol) 'eol !
14

15 forth definitions

Block # 64

(cursor control - TeleVideo 12:47pm cee 23jan84)
(These versions are for TeleVideo terminals)

system definitions

(page) (==) 26 emit ;

(xy) (xy ——) 27 emit ascii = emit 32 + emit 32 + emit ;
(home) (==) 30 emit ;

(ecl) (=-=) 27 emit ascii T emit ;

(eos) (=-=) 27 emit ascii Y emit ;

VoNAaATUd WNDHO

[
[

(page) 'page
(xy) 'xy !

(home) 'home
(eos) 'eos !
(eol) 'eol !

term output

15 forth definitions

Block # 65
0 (cursor control - template 12:47pm cee 23jan84)
1l (This block is a form for defining these for other terminals.)
2 system definitions
3 : (page) (-=) .
4 : (xy) (xy —) ;
5 ¢ (home) (-~ :
6 : (ecl) (=-=) g
7 : (eos) (=-=) :
8
9 term output ' (page) 'page !
10 ' (xy) 'xy !
11 ' (home) 'home !
12 ' (eos) 'eos !
13 ' (eol) 'eol !
14

15 forth definitions

copyright 1983 FPrank Hogg Laboratory

eFORTH LISTINGS APPENDIX C-24

Block # 66
0 (date - FLEX 12:47pm cee 23jan84)
1
2 hex
3
4 date (=-- adr cnt) (uses FLEX date registers)
5 <# CCl0 c@ 0 # # 2drop CCOE ce
6 1- 3 * " janfebmaraprmayjunjulaugsepoctnovdec" drop
7 + 0 2 do dup i + c€ hold -1 +loop drop
8 CCOF ce 0 # # &> ;
9
10 decimal
11
12
13
14
15
Block # 67
0 (date - Gimix CPU board 12:47pm cee 23jan84)
1
2 hex 84 constant year
3
4 date (-- adr cnt) base @ hex
5 year 0 <# # # 2drop E227 c@ dup 9 > if 6 - then
6 l1- 3 * " janfebmaraprmayjunjulaugsepoctnovdec" drop
7 + 0 2 do dup i + c@ hold -1 +loop drop
8 E226 c@ 0 # # &> rot base ! ;
9
10 decimal
11
12
13
14
15
Block # 68
0 (time - Gimix CPU board 12:47pm cee 23jan84)
1
2 hex
3 : time (-- adr cnt)
4 base @ hex <# ascii m hold E224 c@ 11 >
5 if ascii p hold else ascii a hold then
6 E223 ce 0 # # ascii : hold 2drop
7 E224 c@ dup 1 < if 12 + else dup 12 > if dup 20 22 within
8 if 18 - else 12 - then then then
9 0 # # #> rot base ! ;
10
11 decimal
12
13
14
15

copyright 1983 Frank Hogg Laboratory

pr

eFORTH LISTINGS APPENDIX C-25

Block # 69
0 (reserved 12:47pm cee 23jan84)

CoNOTUVEEWNDH

Block # 70
0 (reserved 12:47pm cee 23jan84)

VCoNaAUsSEWN -

Block # 71
0 (reserved 12:47pm cee 23jan84)

VCoNAATLeEWND -

copyright 1983 Frank Hogg Laboratory

pE_—

——

APPENDIX D

eFORTH INSTALLATION - FLEX

REQUIREMENTS

The FLEX implementation of eFORTH (eFORTH/FLEX) requires the
FLEX operating system and at least 32K of RAM (at 1least 40K is
recommended) . No special hardware is required.

MAKE A BACKUP!

eFORTH/FLEX is distributed on either single-density,
single-sided 8" disks or double-density, single-sided 5" disks.
The following instructions assume that you have received a disk
from us in one of these formats.

l. Using FLEX, format one disk for each drive that you have. You
may use any format that works on your drives. We will call these
disks "your" disks. One w.ll be "your drive 0" disk, the second
will be "your drive 1" disk, etc. We will assume that your
system drive is drive 0.

If you are using FHL FLEX for the Color Computer, follow the
directions in Appendix E for making a backup.

2. Write-protect the supplied disk with eFORTH on it by covering
the notch on the disk (5" disks) or uncovering it (8" disks).
We'll call this "our" disk.

3. Put "our" disk in drive 0 and enter EFORTH.CMD and hit return.

4. Put "your" drive 1 disk into drive 1, etc. Set "your" drive 0
disk aside for the moment.

5. When eFORTH starts running, enter

system disking (You must use lower case.)

1l >Drive (The 'D' must be upper case.)

0 Release (The 'R' must be upper case.)

2 >Drive (Only if you have three drives.)
0 Release (Only if you have three drives.)
3 >Drive (Only if you have four drives.)
0 Release (Only if you have four drives.)

copyright 1983 Frank Hogg Laboratory

eFORTH-FLEX APPENDIX D-2

6. Now remove "your" drive 1 disk from drive 1 and put "your"
drive 0 disk into drive 1 (yes, drive 1). Enter

32 Release (The 'R' must be upper case.)

0 1 BackUp (Both 'B' and 'U' must be upper case.)
7. Remove "our" disk from drive 0 and replace it with your FLEX
system disk. eFORTH should still be running. Enter

here hex u.

and hit return. Remember the number that's printed. Let's
suppose it's 4CD0. Now enter

® save,l.forth.cmd,0,4CD0,0" dos

(be sure a space follows both quotation marks) and wait wuntil
FLEX is done creating a FORTH.CMD file on "your" drive 0 disk.

8. Put "our" disk away in a nice, safe place, and don't use it
again unless something terrible happens to "your" disk. 1In that
case, use "our" disk to make another "your" disk.

9. Remove your FLEX system disk from drive 0 and replace it with
"your" drive 0 disk, then put "your" drive 1 disk back into drive
1.

10. Go FORTH!

RUNNING eFORTH

After you have performed the above installation process,
eFORTH is run by simply putting "your" drive 0 disk into drive O,
"your" drive 1 disk into drive 1, etc. and entering FORTH (from
FLEX) .

eFORTH DISK ACCESS

If you followed the above procedure, "your" drive 0 disk is
"partitioned". Part of it is used by FORTH, and FLEX doesn't
know about that part. Part of it is used by FLEX, and FORTH
doesn't know about that part.

The phrase 0 Release reserves the entire disk for FORTH.
The phrase 32 Release releases 32K bytes on the disk for the use
of FLEX. Similarly, the phrase 32 Claim will claim 32K bytes of
the disk for FORTH, the rest will be left for FLEX. Claim and

Frank Hogg Laboratory copyright 1983

eFORTH-FLEX APPENDIX D-3

Release will only work on a freshly formatted disk.

CHANGING DISKS

If you change the disk in a drive and the new disk has a
different format or has a different number of blocks claimed or
released then you must "mount"™ it with Mount which must be
preceded with the drive number. For example,

1 Mount
will mount a new disk in drive 1.

In order for Mount to work correctly, the disk must have
been "claimed" with either Claim or Release .

CALLING FLEX FROM FORTH

The above procedure uses the word dos which is used to pass
a string to FLEX to be interpreted as a FLEX command. Be careful
with it. Some FLEX commands, such as COPY.CMD and NEWDISK.CMD
will destroy eFORTH. Commands such as SAVE.CMD, CAT.CMD, and
LIST.CMD which only use the utility command space work just fine.
FLEX will report any disk errors that arise, but control will
return to eFORTH.

The source code for FLEX specific words will be found on
blocks 72 through 83.

THE .COR FILE

If you decide to change some of the words which appear on
blocks 1 through 83, then , after you have used the editor to
make your changes, Execute the EFORTH.COR file. When eFORTH
starts, enter 1 load and prepare for a wait. When eFORTH finally
says "ok", you may use the "save" procedure described above to
create a new .CMD file which has all of your changes in it.

copyright 1983 Frank Hogg Laboratory

-

—r—y

APPENDIX E

eFORTH INSTALLATION - COCO

REQUIREMENTS

The TRS-80 Color Computer implementation of eFORTH
(eFORTH/COCO) requires at least one disk drive and Disk Extended
BASIC. It also requires 64K of RAM. It will not work in 16K or
32K Color Computers.

MAKE A BACKUP!
eFORTH/COCO is distributed on double-density, single-sided
5" diskettes. The following instructions assume that you have
received a disk from us in this format.

l. Write-protect the supplied disk with eFORTH on it by covering
the notch on the disk. We'll call this "our" disk.

2. While in BASIC use the BACKUP command to copy "our" disk onto
another empty, freshly formatted disk. We'll call this "your"
disk.
3. Put "our" disk away in a nice, safe place, and don't use it
again unless something terrible happens to "your" disk. In that
case, use "our" disk to make another "your" disk.
4. Now put "your" disk in drive 0 and enter

LOADM"EFORTH"
and hit the enter key.

5. When BASIC says "OK", enter EXEC and hit the enter key.
eFORTH will sign on and wait for you to give it something to do.

6. Go FORTH!

copyright 1983 Frank Hogg Laboratory

eFORTH-COCO APPENDIX E-2

If you have another disk drive (drive 1), place an empty,
freshly formatted disk in it and enter

system disking (You must use lower case.)
1 >Drive (The 'D' must be upper case.)
0 Release (The 'R' must be upper case.)

eFORTH DISK ACCESS

If you followed the above procedure, "your" drive 0 disk is
"partitioned". Part of it is used by FORTH, and BASIC doesn't
know about that part. Part of it is used by BASIC, and FORTH
doesn't know about that part.

The phrase 0 Release reserves the entire disk for FORTH.
The phrase 32 Release releases 32K bytes on the disk for the use
of BASIC. Similarly, the phrase 32 Claim will claim 32K bytes of
the disk for FORTH, the rest will be left for BASIC. Claim and
Release will only work on a freshly formatted disk.

CHANGING DISKS
If you change the disk in a drive and the new disk has a
different format or has a different number of blocks claimed or
released, then you must "mount" it with Mount which must be
preceded with the drive number. For example,
1 Mount
will mount a new disk in drive 1.

In order for Mount to work correctly, the disk must have
been "claimed" with either Claim or Release .

If you define new words and want them to be available
whenever you LOADM"FORTH", then do the following:

First enter hex here u. and write down the number that is
printed. Let's suppose that it's 3AB7. Now enter system mon and
you will be back in BASIC. Now enter

SAVEM"FORTH" ,&H1A00,&H3AB7,&H1A00
and hit the enter key. If there is enough room on the disk, the

file FORTH/BIN will be created. Now, whenever you run eFORTH,
all of the words will be in your dictionary that were there when

Frank Hogg Laboratory copyright 1983

"
E

eFORTH-COCO APPENDIX E-3

you saved it.

The source code for Color Computer specific words will be
found on blocks 72 through 83.

THE /COR FILE

If you decide to change some of the words which appear on
blocks 1 through 83, then , after you have used the editor to
make your changes, EXEC the EFORTH/COR file. When eFORTH starts,
enter 1 load and prepare for a wait. When eFORTH finally says
"ok", you may use the SAVEM procedure described above to create a
new /BIN file which has all of your changes in it.

copyright 1983 Frank Hogg Laboratory

eFORTH-COCO APPENDIX E-4

eFORTH KEYBOARD INTERPRETATION

eFORTH interprets the keyboard differently than BASIC. The
following chart shows the ASCII code that each key returns to
eFORTH. the "SHIFT" column means that the SHIFT key is held down
at the same time. The "CONTROL" column means that the CLEAR key
is held down at the same time. So, "control-X" means to hold
down the CLEAR key, then press the "X" key, then let up on both
of them. The codes are given in hexadecimal (base 16).

NORM SHIFT CONTROL

NORM SHIFT CONTROL

_____ et ————
0 30 0 30 *toggle*
131 ! 21] 7C
2 32 "2 00
3 33 # 23 - 7E
4 34 $ 24 00
5 35 4 25 00
6 36 & 26 00
7 37 v 27 * 5E
8 38 (28 [5B
9 39) 29 1 5D
; 3B + 2B 00
,r 2C < 3C { 7B
- 2D = 3D _ SF
/ 2F ? 3F \ 5C

toggle means that this works the same way it does in BASIC.

Frank Hogg Laboratory copyright 1983

b 24

~EN

eFORTH-COCO APPENDIX E-5

NORM SHIFT CONTROL

_____ fmmm——— e ———
@ 40 * 60 00
A 41 a 61 0l
B 42 b 62 02
C 43 c 63 03
D 44 d 64 04
E 45 e 65 05
F 46 f 66 06
G 47 g 67 07
H 48 h 68 08
I 49 i 69 09
J 4A j 6A (17
K 4B k 6B 0B
L 4C 1 6C 0C
M 4D m 6D 0D
N 4E n 6E 0E
O 4F o 6F OF
P 50 p 70 10
Q 51 q 71 11
R 52 r 72 12
S 53 s 73 13
T 54 s 74 14
U 55 u 75 15
V 56 v 76 16
W 57 w 77 17
X 58 x 78 18
Y 59 y 79 19
Z 5A z 7A 1A

copyright 1983 Frank Hogg Laboratory

eFORTH-COCO _ APPENDIX E-6

THE eFORTH/COCO DISPLAY

The video display uses a high-resolution graphics mode to
produce a display format of 24 lines with 51 characters on each
line. It is quite readable on most TV sets.

The display can be controlled by emitting control
characters. The available operations are:

1l emit (toggle the cursor from underline to block and back)
2 emit (toggle the cursor from steady to blinking and back)
5 emit (erase from the cursor to the end of the line)

7 emit (ring the bell)

8 emit (move the cursor to the left)

9 emit (move the cursor to the right)

10 emit (move the cursor down one line)

11 emit (move the cursor up one line)

13 emit (move the cursor to the left margin)

15 emit (move the cursor to the upper left corner)

19 emit (erase from the cursor to the end of the screen)

20 emit (move the cursor to the specified location)

23 emit (insert line)

24 emit (delete line)

26 emit (home cursor and erase the screen)

The "insert line" function moves the current line and all 1lines
below it down one line. The bottom line is lost. The "delete
line" function moves the current line and all lines above it up
one line. The top 1line is lost. The "move cursor" function
requires the line number and the column number on that line to be
specified. For example,

20 emit 32 emit 32 emit

will move the <cursor to the upper 1left corner (the "home"
function), and

20 emit 33 emit 32 emit

will move the cursor to column 0 on line 1l. Notice that 32 must
be added to the column and line number.

Frank Hogg Laboratory copyright 1983

- gy % D
Vo ‘”:E next TYP

A <oy EJA DATA CURRENTLOOP STARTLSB 2 3 4 5 6 MSB PAR STOPSTOP START CHART-wW 1,
b ,{r‘_;::’ o 1=vi MARK ICLBSED) — — 1 FOR 110 BAUD
'f:}<: l\\ 00Vl SPACE IOPEN) 0SB OR| RN 0N R TR 2ST0P BITS
} 1 [h V1=Vl MARK (CLOSED/ NEXT ALL O THER SPEEHS
‘:‘. ;'.& {,_ O1: Vi SPACE (OPEN| o [0 v Lo [[Lo i [stane 1 STOP BIT
VA y
Ly
N BASED ON ANSI X34 1968
Lifshacd
Controf
Keybd.
Octel Dec. Hen Character Equwv Alteraate Code Names Octal Dec. Hex Character Alternates Octal Dec. Hex Character Alternates Octal Dec. Hex Character Alternates
/s S\ | ™ (T 1 NULwwi | | I
pod 0 7] NUL (T} NULL, CTRL SHIFT P, TAPE LEADER 040 32 20 SP SPACE, BLANK 100 | 64 40 e 140 % | 60 | ACCENT GRAVE
001 1 ("] SOH A START OF HEADER, SOM 041 33 21 | 101 | 65 1 A 141 97 61 |
002 2 (@2 | sTX B START OF TEXT, EOA 042 | 38 |22 | 192 | 66 |42 | B 142 [9% g2 | 1y
003 3 a3 ETX C END OF TEXT, EOM 043 35 23 = 103 67 43 (o] 143 % [I R .
004 4 04 EOT D END OF TRANSMISSION, END 044 36 24 S 104 | 68 44 D 144 | 100 | 64 il
005 5 85 ENO E ENQUIRY, WRU,WHO ARE YOU 045 | 37 25 105 | 69 45 E 145 | 101 65 (1
008 6 06 ACK F ACKNOWLEDGE, RU, ARE YOU 046 | 38 26 & 106 | 70 46 F 146 | 102 | G6 | |
097 7/ 07 BEL G BELL 047 | 39 27 Y APOSTROPHE 107 | N 47 G 147 | 103 | 67]
010 B 08 BS H BACKSPACE, FEQ 050 | 40 28 \ 10 | 72 48 H 150 | 104 | 68 | ©
on 9 a0 HT | HORIZONTAL TAB, TAB 851 | 41 29) 1M1 | 73 49 | LETTER | 151 | 105 I 69)
012 10 0A LF J LINE FEED, NEW LENE, NL 052 | 42 2A + 112 | 74 4A J 152 | 106 | 6A)
013 n 08 vT K VERTICAL TAB, VTAB 053 | 43 28 @ 113 | 75 48 K 153 | 107 | 68 | Kk
@14 | 12 | ec | FF L FORM FEED, FORM, PAGE @54 | a4 | 2C | COMMA 114 [76 jac | L 154 | 108 | 6C | |
015 13 @D CR M CARRIAGE RETURN, EOL @55 | 46 2D MINUS 15| 77 | 410 M 155 09 | 6D | in
016 14 | @k S0 N SHIFT OUT, RED SHIFT 856 | 46 2E 16 | 78 | 4E N 156 | 110 | 6E i
017 | 15 | oF | st 0 SHIFT IN, BLACK SHIFT @57 | 47 | 2F 17|79 |a | 0o | LETTEROD 157 | 111 [6F | o
920 | 16 |10 DLE [3 DATA LINK ESCAPE, DCO 060 | 48 | 30 0 NUMBER ZERO 120 | 8¢ | 50 P 160 | 112 |70 |
021 17 n DC1 Q XON, READER ON 061 | 49 3 | NUMBER ONE 121 81 51 [0} 161 R S O ‘
022 | 18 |12 | pc2 | R | TAPE PUNCHON 062 |50 |32 |2 122 | 82 |52 | m 162 ‘ il 16720 [i
@23 | 19 |13 | pc3 5 XOFF, READER OFF @63 | 51 |33 | 3 123 | 83 /|83 | 5 83 |15 (23 | & |
024 | 20 |14 | Dca T TAPE, PUNCH OFF @64 (52 |34 | 4 124 | 84 |54 | T 164 [116 | 74 |
025 21 15 NAK u NEGATIVE ACKNOWLEDGE, ERR 065 | 53 35 | 5 125 | 85 55 u 165|197 |25 | u
026 | 22 |16 | SYN v SYNCHRONOUS IDLE, SYNC 066 | 54 |36 | 6 126 | B6 |66 | V 186 | 18 |76 | v
027 | 23 |17 | ETB w END OF TEXT BUFFER, LEM 067 |86 |37 | 7 127 | 87 |57 | W 167 | 19 | 77 i w
030 | 24 18 CAN X CANCEL, CANCL 070 | 56 38 B 130 | 82 58 X 170 | 120 | /8 | 'x
031 25 19 EM Y END OF MEDIUM 871 | 57 39 9 131 89 59 Y 1700 110121 |79 4y
032 26 | 1A | sus z SUBSTITUTE 072 | 58 3A 132 | o BA z 172 111220 [7A] .~
©33 | 27 |18 | ESC | ESCAPE, PREFIX 073 | 69 |38 | ; 133 | 91 |58 | | 173 1123 | 78 | |
@34 [28 | 1C | FS \ FILE SEPARATOR 074 | 6@ |3C | - LESS THAN 134 | 92 | 5C 174 ‘ 124 [7C || i VERTICAL SLASH
035 29 1D GS | GROUP SEPARATOR @75 | 61 30 135 | 93 5D | 175 | 125 | /D | }
036 30 1E RS A RECORD SEPARATOR 076 | 62 3E . GREATER THAN 136 94 SE A 176 | 126 7E
037 31 | IF us UNIT SEPARATOR @77 | 63 3F i 137 | 95 5F UNDERSCORE 177 | 127 l 1F | DE L
\ TN NS N ‘ J

Tu weasmit sy contiol code (fiest columni. depeess “CTRL™ then the chiacier on the
sme line ke Keyboard Equivalent

